- -

Morphology, Mechanical Performance and Nanoindentation Behavior of Injection Molded PC/ABS-MWCNT Nanocomposites

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Morphology, Mechanical Performance and Nanoindentation Behavior of Injection Molded PC/ABS-MWCNT Nanocomposites

Show full item record

Wegrzyn, M.; Sahuquillo, O.; Benedito, A.; Giménez Torres, E. (2015). Morphology, Mechanical Performance and Nanoindentation Behavior of Injection Molded PC/ABS-MWCNT Nanocomposites. Journal of Applied Polymer Science. 132(22):1-8. https://doi.org/10.1002/app.42014

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150359

Files in this item

Item Metadata

Title: Morphology, Mechanical Performance and Nanoindentation Behavior of Injection Molded PC/ABS-MWCNT Nanocomposites
Author: Wegrzyn, Marcin Sahuquillo, Oscar Benedito, Adolfo Giménez Torres, Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] In this work, nanocomposites of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with various loads of multiwall carbon nanotubes (MWCNT) are investigated. Material is previously formed by masterbatch dilution ...[+]
Subjects: Blends , Graphene and fullerenes , Mechanical properties , Molding , Morphology , Nanotubes
Copyrigths: Reserva de todos los derechos
Source:
Journal of Applied Polymer Science. (issn: 0021-8995 )
DOI: 10.1002/app.42014
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/app.42014
Project ID:
info:eu-repo/grantAgreement/EC/FP7/238363/EU/Marie Curie Initial Training Network for the tailored supply-chain development of the mechanical and electrical properties of CNT-filled composites/
Description: "This is the peer reviewed version of the following article: Wegrzyn, M., Sahuquillo, O., Benedito, A., & Gimenez, E. (2015). Morphology, mechanical performance, and nanoindentation behavior of injection molded PC/ABS‐MWCNT nanocomposites. Journal of Applied Polymer Science, 132(22), which has been published in final form at https://doi.org/10.1002/app.42014. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363.
Type: Artículo

References

Alig, I., Lellinger, D., Engel, M., Skipa, T., & Pötschke, P. (2008). Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 49(7), 1902-1909. doi:10.1016/j.polymer.2008.01.073

Sathyanarayana, S., Wegrzyn, M., Olowojoba, G., Benedito, A., Gimenez, E., Huebner, C., & Henning, F. (2013). Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization. Express Polymer Letters, 7(7), 621-635. doi:10.3144/expresspolymlett.2013.59

Xiong, Z.-Y., Wang, L., Sun, Y., Guo, Z.-X., & Yu, J. (2013). Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 54(1), 447-455. doi:10.1016/j.polymer.2012.11.044 [+]
Alig, I., Lellinger, D., Engel, M., Skipa, T., & Pötschke, P. (2008). Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 49(7), 1902-1909. doi:10.1016/j.polymer.2008.01.073

Sathyanarayana, S., Wegrzyn, M., Olowojoba, G., Benedito, A., Gimenez, E., Huebner, C., & Henning, F. (2013). Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization. Express Polymer Letters, 7(7), 621-635. doi:10.3144/expresspolymlett.2013.59

Xiong, Z.-Y., Wang, L., Sun, Y., Guo, Z.-X., & Yu, J. (2013). Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 54(1), 447-455. doi:10.1016/j.polymer.2012.11.044

Sun, Y., Guo, Z.-X., & Yu, J. (2010). Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromolecular Materials and Engineering, 295(3), 263-268. doi:10.1002/mame.200900242

Göldel, A., Kasaliwal, G. R., Pötschke, P., & Heinrich, G. (2012). The kinetics of CNT transfer between immiscible blend phases during melt mixing. Polymer, 53(2), 411-421. doi:10.1016/j.polymer.2011.11.039

Tiusanen, J., Vlasveld, D., & Vuorinen, J. (2012). Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Composites Science and Technology, 72(14), 1741-1752. doi:10.1016/j.compscitech.2012.07.009

Ma, P.-C., Siddiqui, N. A., Marom, G., & Kim, J.-K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367. doi:10.1016/j.compositesa.2010.07.003

Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018

Pegel, S., Pötschke, P., Petzold, G., Alig, I., Dudkin, S. M., & Lellinger, D. (2008). Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer, 49(4), 974-984. doi:10.1016/j.polymer.2007.12.024

Villmow, T., Pegel, S., Pötschke, P., & Wagenknecht, U. (2008). Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Composites Science and Technology, 68(3-4), 777-789. doi:10.1016/j.compscitech.2007.08.031

Richter, S., Saphiannikova, M., Jehnichen, D., Bierdel, M., & Heinrich, G. (2009). Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. Express Polymer Letters, 3(12), 753-768. doi:10.3144/expresspolymlett.2009.94

Park, D. H., Yoon, K. H., Park, Y.-B., Lee, Y. S., Lee, Y. J., & Kim, S. W. (2009). Electrical resistivity of polycarbonate/multiwalled carbon nanotube composites under varying injection molding conditions. Journal of Applied Polymer Science, 113(1), 450-455. doi:10.1002/app.29989

Chandra , A. Kramschuster , A. J. Hu , X. Turng , S. 2007 2184

Lellinger, D., Xu, D., Ohneiser, A., Skipa, T., & Alig, I. (2008). Influence of the injection moulding conditions on the in-line measured electrical conductivity of polymer-carbon nanotube composites. physica status solidi (b), 245(10), 2268-2271. doi:10.1002/pssb.200879619

Li, S.-N., Li, B., Li, Z.-M., Fu, Q., & Shen, K.-Z. (2006). Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding. Polymer, 47(13), 4497-4500. doi:10.1016/j.polymer.2006.04.051

Schuh, C. A. (2006). Nanoindentation studies of materials. Materials Today, 9(5), 32-40. doi:10.1016/s1369-7021(06)71495-x

Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564

Cakmak, U. D., Schöberl, T., & Major, Z. (2011). Nanoindentation of polymers. Meccanica, 47(3), 707-718. doi:10.1007/s11012-011-9481-6

VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F., & Meyers, G. F. (2001). Nanoindentation of polymers: an overview. Macromolecular Symposia, 167(1), 15-44. doi:10.1002/1521-3900(200103)167:1<15::aid-masy15>3.0.co;2-t

Pharr, G. M., Strader, J. H., & Oliver, W. C. (2009). Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. Journal of Materials Research, 24(3), 653-666. doi:10.1557/jmr.2009.0096

Yao, C.-K., Liao, J.-D., Chung, C.-W., Sung, W.-I., & Chang, N.-J. (2012). Porous chitosan scaffold cross-linked by chemical and natural procedure applied to investigate cell regeneration. Applied Surface Science, 262, 218-221. doi:10.1016/j.apsusc.2012.05.128

Sonnenfeld, A., Roth, C., Dimitrova, Z., Spillmann, A., & von Rohr, P. R. (2009). Plasma Enhanced Chemical Vapor Deposition on Particulate Solid-State Materials for Improved Powder Processing. Plasma Processes and Polymers, 6(S1), S860-S863. doi:10.1002/ppap.200932202

Shokrieh, M. M., Hosseinkhani, M. R., Naimi-Jamal, M. R., & Tourani, H. (2013). Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polymer Testing, 32(1), 45-51. doi:10.1016/j.polymertesting.2012.09.001

Chakraborty, H., Sinha, A., Mukherjee, N., Ray, D., & Protim Chattopadhyay, P. (2013). A study on nanoindentation and tribological behaviour of multifunctional ZnO/PMMA nanocomposite. Materials Letters, 93, 137-140. doi:10.1016/j.matlet.2012.11.075

Shen, L., Phang, I. Y., Liu, T., & Zeng, K. (2004). Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II. Effect of strain rate. Polymer, 45(24), 8221-8229. doi:10.1016/j.polymer.2004.09.062

Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412

Briscoe, B. J., Fiori, L., & Pelillo, E. (1998). Nano-indentation of polymeric surfaces. Journal of Physics D: Applied Physics, 31(19), 2395-2405. doi:10.1088/0022-3727/31/19/006

Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645f

Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters, 6(7), 601-608. doi:10.3144/expresspolymlett.2012.63

Gupta, M., & Wang, K. K. (1993). Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results. Polymer Composites, 14(5), 367-382. doi:10.1002/pc.750140503

Abbasi, S., Carreau, P. J., & Derdouri, A. (2010). Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties. Polymer, 51(4), 922-935. doi:10.1016/j.polymer.2009.12.041

Sahin, S., & Yayla, P. (2005). Effects of testing parameters on the mechanical properties of polypropylene random copolymer. Polymer Testing, 24(5), 613-619. doi:10.1016/j.polymertesting.2005.03.002

Chasiotis, I., Chen, Q., Odegard, G. M., & Gates, T. S. (2005). Structure-property relationships in polymer composites with micrometer and submicrometer graphite platelets. Experimental Mechanics, 45(6), 507-516. doi:10.1007/bf02427904

Penumadu, D., Dutta, A., Pharr, G. M., & Files, B. (2003). Mechanical properties of blended single-wall carbon nanotube composites. Journal of Materials Research, 18(8), 1849-1853. doi:10.1557/jmr.2003.0258

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record