- -

Sensitivity of NEXT-100 to neutrinoless double beta decay

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Sensitivity of NEXT-100 to neutrinoless double beta decay

Show full item record

Martín-Albo, J.; Muñoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gomez-Cadenas, JJ.; Álvarez-Puerta, V.; Azevedo, C.... (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics. (5). https://doi.org/10.1007/JHEP05(2016)159

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150415

Files in this item

Item Metadata

Title: Sensitivity of NEXT-100 to neutrinoless double beta decay
Author: Martín-Albo, J. Muñoz Vidal, J. Ferrario, P. Nebot-Guinot, M. Gomez-Cadenas, J. J. Álvarez-Puerta, Vicente Azevedo, C.D.R. Borges, F.I.G. Carcel, S. Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Querol, M. Rodriguez-Samaniego, Javier Toledo Alarcón, José Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Issued date:
[EN] NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0¿ßß) decay of 136Xe. The detector possesses two features of great value for 0¿ßß ...[+]
Subjects: Dark Matter , Double Beta Decay , Rare decay
Copyrigths: Reconocimiento (by)
Journal of High Energy Physics. (issn: 1126-6708 )
DOI: 10.1007/JHEP05(2016)159
Publisher version: https://doi.org/10.1007/JHEP05(2016)159
Project ID:
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experiments/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/103860/PT/Participation in the international collaboration "NEXT-Neutrino Experiment with a Xenon TPC" aiming the direct detection of the neutrinoless double beta decay/
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/
info:eu-repo/grantAgreement/MICINN//CSD2008-00037/ES/Canfranc Underground Physics/
The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Econom¿ıa y Competitividad of Spain ...[+]
Type: Artículo


S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [ INSPIRE ].

P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [ INSPIRE ].

M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North-Holland Publishing Company, Amsterdam The Netherlands (1979), pg. 315. [+]
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [ INSPIRE ].

P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [ INSPIRE ].

M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North-Holland Publishing Company, Amsterdam The Netherlands (1979), pg. 315.

T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theories and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95.

R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [ INSPIRE ].

S.F. King, Neutrinos, flavour and CP violation, PoS(PLANCK 2015)068 .

M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [ INSPIRE ].

J.J. Gómez-Cadenas, J. Martín-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The Search for neutrinoless double beta decay, Riv. Nuovo Cim. 35 (2012) 29 [ arXiv:1109.5515 ] [ INSPIRE ].

A. Giuliani and A. Poves, Neutrinoless double-beta decay, Adv. High Energy Phys. 2012 (2012) 857016.

S.R. Elliott, Recent Progress in Double Beta Decay, Mod. Phys. Lett. A 27 (2012) 1230009 [ arXiv:1203.1070 ] [ INSPIRE ].

O. Cremonesi and M. Pavan, Challenges in Double Beta Decay, Adv. High Energy Phys. 2014 (2014) 951432 [ arXiv:1310.4692 ] [ INSPIRE ].

NEXT collaboration, V. Álvarez et al., Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Instrum. Meth. A 708 (2013) 101 [ arXiv:1211.4474 ] [ INSPIRE ].

NEXT collaboration, D. Lorca et al., Characterisation of NEXT-DEMO using xenon K α X-rays, 2014 JINST 9 P10007 [ arXiv:1407.3966 ] [ INSPIRE ].

NEXT collaboration, V. Álvarez et al., Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [ arXiv:1306.0471 ] [ INSPIRE ].

NEXT collaboration, P. Ferrario et al., First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP 01 (2016) 104 [ arXiv:1507.05902 ] [ INSPIRE ].

G. Feinberg and M. Goldhaber, Microscopic tests of symmetry principles, Proc. Natl. Acad. Sci. USA 45 (1959) 1301.

B. Pontecorvo, Superweak interactions and double beta decay, Phys. Lett. B 26 (1968) 630 [ INSPIRE ].

R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [ INSPIRE ].

R.N. Mohapatra, New Contributions to Neutrinoless Double beta Decay in Supersymmetric Theories, Phys. Rev. D 34 (1986) 3457 [ INSPIRE ].

M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, New supersymmetric contributions to neutrinoless double beta decay, Phys. Lett. B 352 (1995) 1 [ hep-ph/9502315 ] [ INSPIRE ].

V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay, Phys. Rev. Lett. 106 (2011) 151801 [ arXiv:1011.3522 ] [ INSPIRE ].

G. Racah, On the symmetry of particle and antiparticle, Nuovo Cim. 14 (1937) 322 [ INSPIRE ].

W.H. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [ INSPIRE ].

M. Wang et al., The Ame2012 atomic mass evaluation, Chin. Phys. C 36 (2012) 1603.

M. Redshaw, E. Wingfield, J. McDaniel and E.G. Myers, Mass and double-beta-decay Q value of Xe-136, Phys. Rev. Lett. 98 (2007) 053003 [ INSPIRE ].

P.M. McCowan and R.C. Barber, Q value for the double-beta decay of Xe-136, Phys. Rev. C 82 (2010) 024603 [ INSPIRE ].

J. Kotila and F. Iachello, Phase space factors for double-β decay, Phys. Rev. C 85 (2012) 034316 [ arXiv:1209.5722 ] [ INSPIRE ].

M. Mirea, T. Pahomi and S. Stoica, Phase Space Factors for Double Beta Decay: an up-date, arXiv:1411.5506 [ INSPIRE ].

J. Menendez, A. Poves, E. Caurier and F. Nowacki, Disassembling the Nuclear Matrix Elements of the Neutrinoless beta beta Decay, Nucl. Phys. A 818 (2009) 139 [ arXiv:0801.3760 ] [ INSPIRE ].

J. Barea, J. Kotila and F. Iachello, 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration, Phys. Rev. C 91 (2015) 034304 [ arXiv:1506.08530 ] [ INSPIRE ].

F. Šimkovic, V. Rodin, A. Faessler and P. Vogel, 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation and isospin symmetry restoration, Phys. Rev. C 87 (2013) 045501 [ arXiv:1302.1509 ] [ INSPIRE ].

J. Hyvärinen and J. Suhonen, Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange, Phys. Rev. C 91 (2015) 024613 [ INSPIRE ].

N. López Vaquero, T.R. Rodríguez and J.L. Egido, Shape and pairing fluctuations effects on neutrinoless double beta decay nuclear matrix elements, Phys. Rev. Lett. 111 (2013) 142501 [ arXiv:1401.0650 ] [ INSPIRE ].

J.M. Yao, L.S. Song, K. Hagino, P. Ring and J. Meng, Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory, Phys. Rev. C 91 (2015) 024316 [ arXiv:1410.6326 ] [ INSPIRE ].

A.S. Barabash, Average and recommended half-life values for two neutrino double beta decay, Nucl. Phys. A 935 (2015) 52 [ arXiv:1501.05133 ] [ INSPIRE ].

J. Barea, J. Kotila and F. Iachello, Nuclear matrix elements for double-β decay, Phys. Rev. C 87 (2013) 014315 [ arXiv:1301.4203 ] [ INSPIRE ].

J. Engel, F. Simkovic and P. Vogel, Chiral Two-Body Currents and Neutrinoless Double-Beta Decay in the QRPA, Phys. Rev. C 89 (2014) 064308 [ arXiv:1403.7860 ] [ INSPIRE ].

J. Engel, Uncertainties in nuclear matrix elements for neutrinoless double-beta decay, J. Phys. G 42 (2015) 034017 [ INSPIRE ].

S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, arXiv:1601.07512 [ INSPIRE ].

M.C. Gonzalez-García, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [ arXiv:1409.5439 ] [ INSPIRE ].

Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [ INSPIRE ].

GERDA collaboration, M. Agostini et al., Results on Neutrinoless Double-β Decay of 76 Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 122503 [ arXiv:1307.4720 ] [ INSPIRE ].

EXO-200 collaboration, J.B. Albert et al., Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229 [ arXiv:1402.6956 ] [ INSPIRE ].

KamLAND-Zen collaboration, K. Asakura et al., Results from KamLAND-Zen, AIP Conf. Proc. 1666 (2015) 170003 [ arXiv:1409.0077 ] [ INSPIRE ].

G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [ physics/9711021 ] [ INSPIRE ].

J.J. Gomez-Cadenas et al., Sense and sensitivity of double beta decay experiments, JCAP 06 (2011) 007 [ arXiv:1010.5112 ] [ INSPIRE ].

D. Nygren, High-pressure xenon gas electroluminescent TPC for 0nu beta beta-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [ INSPIRE ].

K. Lung et al., Characterization of the Hamamatsu R11410-10 3-Inch Photomultiplier Tube for Liquid Xenon Dark Matter Direct Detection Experiments, Nucl. Instrum. Meth. A 696 (2012) 32 [ arXiv:1202.2628 ] [ INSPIRE ].

Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [ INSPIRE ].

S.-C. Wu, Nuclear data sheets for A = 214, Nucl. Data Sheets 110 (2009) 681.

M.J. Martin, Nuclear data sheets for A = 208, Nucl. Data Sheets 108 (2007) 1583.

V. Álvarez et al., Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements, 2013 JINST 8 T01002 [ arXiv:1211.3961 ] [ INSPIRE ].

NEXT collaboration, T. Dafni et al., Results of the material screening program of the NEXT experiment, arXiv:1411.1222 [ INSPIRE ].

NEXT collaboration, S. Cebrián et al., Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment, 2015 JINST 10 P05006 [ arXiv:1411.1433 ] [ INSPIRE ].

S. Cebrián et al., Radon and material radiopurity assessment for the NEXT double beta decay experiment, AIP Conf. Proc. 1672 (2015) 060002 [ arXiv:1505.07052 ] [ INSPIRE ].

D.S. Leonard et al., Systematic study of trace radioactive impurities in candidate construction materials for EXO-200, Nucl. Instrum. Meth. A 591 (2008) 490 [ arXiv:0709.4524 ] [ INSPIRE ].

M. Auger et al., The EXO-200 detector, part I: Detector design and construction, 2012 JINST 7 P05010 [ arXiv:1202.2192 ] [ INSPIRE ].

A. Bettini, The Canfranc Underground Laboratory (LSC), Eur. Phys. J. Plus 127 (2012) 112 [ INSPIRE ].

I. Bandac, Gamma flux at the LSC, private communication (2013).

I. Bandac, Radón y radiación ambiental en el Laboratorio Subterráneo de Canfranc (LSC), Radioprotección XXI (2014) 24.

NEMO collaboration, A. Nachab, Radon reduction and radon monitoring in the NEMO experiment, AIP Conf. Proc. 897 (2007) 35 [ INSPIRE ].

DarkSide collaboration, M. Bossa, DarkSide-50, a background free experiment for dark matter searches, 2014 JINST 9 C01034 [ INSPIRE ].

NEXT collaboration, V. Alvarez et al., Ionization and scintillation response of high-pressure xenon gas to alpha particles, 2013 JINST 8 P05025 [ arXiv:1211.4508 ] [ INSPIRE ].

NEXT collaboration, L. Serra et al., An improved measurement of electron-ion recombination in high-pressure xenon gas, 2015 JINST 10 P03025 [ arXiv:1412.3573 ] [ INSPIRE ].

EXO-200 collaboration, J.B. Albert et al., Improved measurement of the 2νββ half-life of 136 Xe with the EXO-200 detector, Phys. Rev. C 89 (2014) 015502 [ arXiv:1306.6106 ] [ INSPIRE ].

J.B. Albert et al., Investigation of radioactivity-induced backgrounds in EXO-200, Phys. Rev. C 92 (2015) 015503 [ arXiv:1503.06241 ] [ INSPIRE ].

G. Luzón et al., Characterization of the Canfranc Underground Laboratory: Status and future plans, in Proceedings of the 6th International Workshop on the Identification of Dark Matter (IDM), Rhodes Greece (2006), pg. 514.

P. Lipari and T. Stanev, Propagation of multi-TeV muons, Phys. Rev. D 44 (1991) 3543 [ INSPIRE ].

E. Browne and J.K. Tuli, Nuclear data sheets for A = 137, Nucl. Data Sheets 108 (2007) 2173.

J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. Thesis, Universitat de València, València Spain (2015).

GEANT4 collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [ INSPIRE ].

O.A. Ponkratenko, V.I. Tretyak and Yu. G. Zdesenko, The Event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei, Phys. Atom. Nucl. 63 (2000) 1282 [ nucl-ex/0104018 ] [ INSPIRE ].

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to algorithms, third edition, MIT Press, Cambridge U.S.A. (2009).

J. Neyman and E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. Roy. Soc. Lond. A 231 (1933) 289.

NEMO-3 collaboration, R. Arnold et al., Search for neutrinoless double-beta decay of 100 M o with the NEMO-3 detector, Phys. Rev. D 89 (2014) 111101 [ arXiv:1311.5695 ] [ INSPIRE ].




This item appears in the following Collection(s)

Show full item record