- -

Topological control in the hydrogen bond-directed self-asembly of ortho-, meta-, and para-phenylene-substituted dioxamic acid diethyl esters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Topological control in the hydrogen bond-directed self-asembly of ortho-, meta-, and para-phenylene-substituted dioxamic acid diethyl esters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Roca, María Del Carmen es_ES
dc.contributor.author Blay, G. es_ES
dc.contributor.author Fernández, I. es_ES
dc.contributor.author Pedro, J. R. es_ES
dc.contributor.author Carrasco, R. es_ES
dc.contributor.author Castellano, M. es_ES
dc.contributor.author Ruiz-García, R. es_ES
dc.contributor.author Cano, J. es_ES
dc.date.accessioned 2020-09-19T03:33:32Z
dc.date.available 2020-09-19T03:33:32Z
dc.date.issued 2010-05-29 es_ES
dc.identifier.issn 1466-8033 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150419
dc.description.abstract [EN] The structures of the series of N,N¿-1,n-phenylenebis(oxamic acid ethyl ester) molecules with n = 2 (H2Et2opba, 1), 3 (H2Et2mpba, 2), and 4 (H2Et2ppba, 3) have been determined by single-crystal X-ray diffraction (XRD) methods. Density functional (DF) calculations have been performed on the simplest model system N-phenyloxamic acid methyl ester (HMepma). Compounds 1¿3 have either folded (H2Et2opba), bent (H2Et2mpba), or linear (H2Et2ppba) almost planar (periplanar) molecular configurations with the two oxalamide moieties being slightly tilted up and down, respectively, with respect to the benzene ring. The energy calculations as a function of the torsion angle (¿) around the N(amide)¿C(benzene) bond for HMepma reveal that the minimum energy syn and anti periplanar conformations of the carboxamide functions are more stable than the corresponding syn and anti planar ones (¿ = 0 and 180°) by 0.18 and 0.13 kcal mol¿1, respectively. The calculated ¿ values for the syn and anti periplanar minimized conformers of HMepma are 16.0 and 200.0°, respectively, in reasonable agreement with the experimental values for 1¿3 [¿ = 39.0(4) and 225.0(3) (H2Et2opba), 32.6(5) (H2Et2mpba), and 34.7(2)° (H2Et2ppba)]. This situation likely minimizes the forced repulsive interactions between the amide hydrogen and the nearest benzene hydrogen atoms while it maximizes the attractive interactions between the carbonyl amide oxygen and the nearest benzene hydrogen atoms, which are then implicated in a relatively weak, intramolecular C¿H(benzene)¿O[double bond, length as m-dash]C(amide) hydrogen bond [d(H¿O) = 2.45(2)¿2.57(2) Å]. A supramolecular aggregation of molecules into either a duplex (H2Et2opba) or a brick-wall sheet (H2Et2ppba) occurs for 1 and 3, respectively, through moderately strong, intermolecular N¿H(amide)¿O[double bond, length as m-dash]C(amide) hydrogen bonds [d¿(H¿O) = 2.17(2)¿2.37(2) Å]. By contrast, moderately weak, intermolecular N¿H(amide)¿O[double bond, length as m-dash]C(ester) hydrogen bonds between the H2Et2mpba molecules are involved in 2 to give a meso-helical chain with a unique hydrogen-bonded oxalamide acid ester dimeric unit. The energy calculations as a function of the intermolecular N¿H(amide)¿O[double bond, length as m-dash]C(ester) hydrogen bond distance (d¿) for the {HMepma}2 dimer show an energy minimum at 2.37 Å, in excellent agreement with the experimental value of 2 [d¿(H¿O) = 2.42(4) Å]. The calculated value of the hydrogen bond energy for {HMepma}2 (EHB = 4.83 kcal mol¿1) is consistent with a partially covalent nature of the interaction between the amide hydrogen and the carbonyl ester oxygen atoms, as confirmed by the existence of a significant electron density delocalization within the resulting four-center H2O2 diamond core. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Educacion y Ciencia (Spain) (projects CTQ2006-14199 and CTQ2007-61690) and the Generalitat Valenciana (Spain) (project PROMETEO/2009/108). We thank Prof. Miguel Julve and Jose Antonio Real for continuous interest in this work and fruitful discussions during the preparation of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof CrystEngComm es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Topological control in the hydrogen bond-directed self-asembly of ortho-, meta-, and para-phenylene-substituted dioxamic acid diethyl esters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c001682a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ2007-61690/ES/MAGNETISMO MOLECULAR: SINTESIS RAZONADA, CARACTERIZACION ESTRUCTURAL Y ESTUDIO DE PROPIEDADES MAGNETICAS DE COMPLEJOS MONO- Y POLINUCLEARES CON IONES DE METALES DE TRANSICION Y LANTANIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ2006-14200/ES/DISEÑO Y SINTESIS DE NUEVOS LIGANDOS DE TIPO HIDROXIAMIDA Y OXAZOLINA DERIVADOS DEL ACIDO MANDELICO. APLICACION EN REACCIONES CATALITICAS ENANTIOSELECTIVAS DE FORMACION DE ENLACES CARBONO-CARBONO./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F108/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Muñoz Roca, MDC.; Blay, G.; Fernández, I.; Pedro, JR.; Carrasco, R.; Castellano, M.; Ruiz-García, R.... (2010). Topological control in the hydrogen bond-directed self-asembly of ortho-, meta-, and para-phenylene-substituted dioxamic acid diethyl esters. CrystEngComm. 12(8):2473-2484. https://doi.org/10.1039/c001682a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c001682a es_ES
dc.description.upvformatpinicio 2473 es_ES
dc.description.upvformatpfin 2484 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\38950 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Lawrence, D. S., Jiang, T., & Levett, M. (1995). Self-Assembling Supramolecular Complexes. Chemical Reviews, 95(6), 2229-2260. doi:10.1021/cr00038a018 es_ES
dc.description.references Brunsveld, L., Folmer, B. J. B., Meijer, E. W., & Sijbesma, R. P. (2001). Supramolecular Polymers. Chemical Reviews, 101(12), 4071-4098. doi:10.1021/cr990125q es_ES
dc.description.references Etter, M. C. (1990). Encoding and decoding hydrogen-bond patterns of organic compounds. Accounts of Chemical Research, 23(4), 120-126. doi:10.1021/ar00172a005 es_ES
dc.description.references Aakeröy, C. B., & Seddon, K. R. (1993). The hydrogen bond and crystal engineering. Chem. Soc. Rev., 22(6), 397-407. doi:10.1039/cs9932200397 es_ES
dc.description.references Desiraju, G. R. (1995). Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angewandte Chemie International Edition in English, 34(21), 2311-2327. doi:10.1002/anie.199523111 es_ES
dc.description.references Whitesides, G. M., Simanek, E. E., Mathias, J. P., Seto, C. T., Chin, D., Mammen, M., & Gordon, D. M. (1995). Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates. Accounts of Chemical Research, 28(1), 37-44. doi:10.1021/ar00049a006 es_ES
dc.description.references Rebek, J. (1996). Assembly and encapsulation with self-complementary molecules. Chemical Society Reviews, 25(4), 255. doi:10.1039/cs9962500255 es_ES
dc.description.references Stang, P. J., & Olenyuk, B. (1997). Self-Assembly, Symmetry, and Molecular Architecture:  Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra. Accounts of Chemical Research, 30(12), 502-518. doi:10.1021/ar9602011 es_ES
dc.description.references Fujita, M. (1999). Self-Assembly of [2]Catenanes Containing Metals in Their Backbones. Accounts of Chemical Research, 32(1), 53-61. doi:10.1021/ar9701068 es_ES
dc.description.references Caulder, D. L., & Raymond, K. N. (1999). Supermolecules by Design. Accounts of Chemical Research, 32(11), 975-982. doi:10.1021/ar970224v es_ES
dc.description.references Swiegers, G. F., & Malefetse, T. J. (2000). New Self-Assembled Structural Motifs in Coordination Chemistry. Chemical Reviews, 100(9), 3483-3538. doi:10.1021/cr990110s es_ES
dc.description.references Steel, P. J. (2005). Ligand Design in Multimetallic Architectures:  Six Lessons Learned. Accounts of Chemical Research, 38(4), 243-250. doi:10.1021/ar040166v es_ES
dc.description.references Burrows, A. D., Chan, C.-W., Chowdhry, M. M., McGrady, J. E., & Mingos, D. M. P. (1995). Multidimensional crystal engineering of bifunctional metal complexes containing complementary triple hydrogen bonds. Chemical Society Reviews, 24(5), 329. doi:10.1039/cs9952400329 es_ES
dc.description.references Tadokoro, M., & Nakasuji, K. (2000). Hydrogen bonded 2,2′-biimidazolate transition metal complexes as a tool of crystal engineering. Coordination Chemistry Reviews, 198(1), 205-218. doi:10.1016/s0010-8545(99)00223-4 es_ES
dc.description.references Ruiz, R., Faus, J., Lloret, F., Julve, M., & Journaux, Y. (1999). Coordination chemistry of N,N′-bis(coordinating group substituted)oxamides: a rational design of nuclearity tailored polynuclear complexes. Coordination Chemistry Reviews, 193-195, 1069-1117. doi:10.1016/s0010-8545(99)00138-1 es_ES
dc.description.references Pardo, E., Ruiz-García, R., Cano, J., Ottenwaelder, X., Lescouëzec, R., Journaux, Y., … Julve, M. (2008). Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective. Dalton Transactions, (21), 2780. doi:10.1039/b801222a es_ES
dc.description.references Cervera, B., Sanz, J. L., Ibáñez, M. J., Vila, G., LLoret, F., Julve, M., … Muñoz, M. C. (1998). Stabilization of copper(III) complexes by substituted oxamate ligands. Journal of the Chemical Society, Dalton Transactions, (5), 781-790. doi:10.1039/a706964b es_ES
dc.description.references Fernández, I., Ruiz, R., Faus, J., Julve, M., Lloret, F., Cano, J., … Muñoz, M. C. (2001). Ferromagnetic Coupling through Spin Polarization in a Dinuclear Copper(II) Metallacyclophane. Angewandte Chemie International Edition, 40(16), 3039-3042. doi:10.1002/1521-3773(20010817)40:16<3039::aid-anie3039>3.0.co;2-p es_ES
dc.description.references Pardo, E., Faus, J., Julve, M., Lloret, F., Muñoz, M. C., Cano, J., … Ruiz-García, R. (2003). Long-Range Magnetic Coupling through Extended π-Conjugated Aromatic Bridges in Dinuclear Copper(II) Metallacyclophanes. Journal of the American Chemical Society, 125(36), 10770-10771. doi:10.1021/ja030060f es_ES
dc.description.references Frkanec, L., & Žinić, M. (2010). Chiral bis(amino acid)- and bis(amino alcohol)-oxalamidegelators. Gelation properties, self-assembly motifs and chirality effects. Chem. Commun., 46(4), 522-537. doi:10.1039/b920353m es_ES
dc.description.references Blay, G., Fernández, I., Pedro, J. R., Ruiz-García, R., Muñoz, M. C., Cano, J., & Carrasco, R. (2003). A Hydrogen-Bonded Supramolecular meso-Helix. European Journal of Organic Chemistry, 2003(9), 1627-1630. doi:10.1002/ejoc.200200544 es_ES
dc.description.references Martín, S., Beitia, J. I., Ugalde, M., Vitoria, P., & Cortés, R. (2002). DiethylN,N′-o-phenylenedioxamate. Acta Crystallographica Section E Structure Reports Online, 58(8), o913-o915. doi:10.1107/s1600536802012849 es_ES
dc.description.references Padilla-Martínez, I. I., Chaparro-Huerta, M., Martínez-Martínez, F. J., Höpfl, H., & García-Báez, E. V. (2003). DiethylN,N′-m-phenylenedioxamate. Acta Crystallographica Section E Structure Reports Online, 59(6), o825-o827. doi:10.1107/s1600536803010225 es_ES
dc.description.references Yang, W., & Liu, X. (2008). DiethylN,N′-(p-phenylene)dioxamate. Acta Crystallographica Section E Structure Reports Online, 64(9), o1852-o1852. doi:10.1107/s1600536808027190 es_ES
dc.description.references Coe, S., Kane, J. J., Nguyen, T. L., Toledo, L. M., Wininger, E., Fowler, F. W., & Lauher, J. W. (1997). Molecular Symmetry and the Design of Molecular Solids:  The Oxalamide Functionality as a Persistent Hydrogen Bonding Unit. Journal of the American Chemical Society, 119(1), 86-93. doi:10.1021/ja961958q es_ES
dc.description.references Luong Nguyen, T., Scott, A., Dinkelmeyer, B., Fowler, F. W., & Lauher, J. W. (1998). Design of molecular solids: utility of the hydroxyl functionality as a predictable design element. New Journal of Chemistry, 22(2), 129-135. doi:10.1039/a707642h es_ES
dc.description.references Nguyen, T. L., Fowler, F. W., & Lauher, J. W. (2001). Commensurate and Incommensurate Hydrogen Bonds. An Exercise in Crystal Engineering. Journal of the American Chemical Society, 123(44), 11057-11064. doi:10.1021/ja016635v es_ES
dc.description.references Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallographica Section A Foundations of Crystallography, 46(6), 467-473. doi:10.1107/s0108767390000277 es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096 es_ES
dc.description.references Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146 es_ES
dc.description.references Mulliken, R. S. (1962). Criteria for the Construction of Good Self‐Consistent‐Field Molecular Orbital Wave Functions, and the Significance of LCAO‐MO Population Analysis. The Journal of Chemical Physics, 36(12), 3428-3439. doi:10.1063/1.1732476 es_ES
dc.description.references Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009 es_ES
dc.description.references Dunitz, J. D., & Bernstein, J. (1995). Disappearing Polymorphs. Accounts of Chemical Research, 28(4), 193-200. doi:10.1021/ar00052a005 es_ES
dc.description.references Steiner, T. (2002). The Hydrogen Bond in the Solid State. Angewandte Chemie International Edition, 41(1), 48-76. doi:10.1002/1521-3773(20020104)41:1<48::aid-anie48>3.0.co;2-u es_ES
dc.description.references Brunsveld, L., Prince, R. B., Meijer, E. W., & Moore, J. S. (2000). Conformational Ordering of Apolar, Chiralm-Phenylene Ethynylene Oligomers. Organic Letters, 2(11), 1525-1528. doi:10.1021/ol0056877 es_ES
dc.description.references Phillips, K. E. S., Katz, T. J., Jockusch, S., Lovinger, A. J., & Turro, N. J. (2001). Synthesis and Properties of an Aggregating Heterocyclic Helicene. Journal of the American Chemical Society, 123(48), 11899-11907. doi:10.1021/ja011706b es_ES
dc.description.references Bartlett, R. A., Olmstead, M. M., & Power, P. P. (1986). Structural characterization of the solvate complexes of the lithium diorganophosphides [{Li(Et2O)PPh2}.infin.], [{Li(THF)2PPh2}.infin.], and [{Li(THF)P(C6H11)2}.infin.]. Inorganic Chemistry, 25(8), 1243-1247. doi:10.1021/ic00228a034 es_ES
dc.description.references Becker, G., Eschbach, B., Mundt, O., & Seidler, N. (1994). Metallderivate von Molek�lverbindungen. VIII.catena-Poly[(2,5,8-trioxanonan-O2,O5) lithium-methylphosphanid] ? eine Verbindung mitmeso-Helix-Struktur. Zeitschrift f�r anorganische und allgemeine Chemie, 620(8), 1381-1390. doi:10.1002/zaac.19946200810 es_ES
dc.description.references Plasseraud, L., Maid, H., Hampel, F., & Saalfrank, R. W. (2001). A meso-Helical Coordination Polymer from Achiral Dinuclear [Cu2(H3CCN)2(μ-pydz)3][PF6]2 and 1,3-Bis(diphenylphosphanyl)propane—Synthesis and Crystal Structure of{[Cu(μ-pydz)2][PF6]} (pydz=pyridazine). Chemistry - A European Journal, 7(18), 4007-4011. doi:10.1002/1521-3765(20010917)7:18<4007::aid-chem4007>3.0.co;2-j es_ES
dc.description.references Lehn, J. M., Rigault, A., Siegel, J., Harrowfield, J., Chevrier, B., & Moras, D. (1987). Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. Proceedings of the National Academy of Sciences, 84(9), 2565-2569. doi:10.1073/pnas.84.9.2565 es_ES
dc.description.references Rowan, A. E., & Nolte, R. J. M. (1998). Helical Molecular Programming. Angewandte Chemie International Edition, 37(1-2), 63-68. doi:10.1002/(sici)1521-3773(19980202)37:1/2<63::aid-anie63>3.0.co;2-4 es_ES
dc.description.references Shii, Y., Motoda, Y., Matsuo, T., Kai, F., Nakashima, T., Tuchagues, J.-P., & Matsumoto, N. (1999). Deprotonation-Induced Enantioselective Aggregation and Deprotonation-Induced Ligand Rearrangement of Copper(II) Complexes Yield 1D Homochiral and Heterochiral Chains and a Cyclic Tetramer, Respectively. Inorganic Chemistry, 38(15), 3513-3522. doi:10.1021/ic9813260 es_ES
dc.description.references Zhang, Y., Li, J., Chen, J., Su, Q., Deng, W., Nishiura, M., … Wang, Q. (2000). A Novel α-Helix-Liked Metallohelicate Series and Their Structural Adjustments for the Isomorphous Substitution. Inorganic Chemistry, 39(11), 2330-2336. doi:10.1021/ic990911d es_ES
dc.description.references Ellis, W. W., Schmitz, M., Arif, A. A., & Stang, P. J. (2000). Preparation, Characterization, and X-ray Crystal Structures of Helical and Syndiotactic Zinc-Based Coordination Polymers. Inorganic Chemistry, 39(12), 2547-2557. doi:10.1021/ic991315m es_ES
dc.description.references Tabellion, F. M., Seidel, S. R., Arif, A. M., & Stang, P. J. (2001). A Novel, Tunable Manganese Coordination System Based on a Flexible «Spacer» Unit:  Noncovalent Templation Effects. Journal of the American Chemical Society, 123(48), 11982-11990. doi:10.1021/ja0114310 es_ES
dc.description.references Öhrström, L., Larsson, K., Borg, S., & Norberg, S. T. (2001). Crucial Influence of Solvent and Chirality—The Formation of Helices and Three-Dimensional Nets by Hydrogen-Bonded Biimidazolate Complexes. Chemistry - A European Journal, 7(22), 4805-4810. doi:10.1002/1521-3765(20011119)7:22<4805::aid-chem4805>3.0.co;2-3 es_ES
dc.description.references Albrecht, M. (2001). «Let»s Twist Again’Double-Stranded, Triple-Stranded, and Circular Helicates. Chemical Reviews, 101(11), 3457-3498. doi:10.1021/cr0103672 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem