Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz Roca, María Del Carmen | es_ES |
dc.contributor.author | Blay, G. | es_ES |
dc.contributor.author | Fernández, I. | es_ES |
dc.contributor.author | Pedro, J. R. | es_ES |
dc.contributor.author | Carrasco, R. | es_ES |
dc.contributor.author | Castellano, M. | es_ES |
dc.contributor.author | Ruiz-García, R. | es_ES |
dc.contributor.author | Cano, J. | es_ES |
dc.date.accessioned | 2020-09-19T03:33:32Z | |
dc.date.available | 2020-09-19T03:33:32Z | |
dc.date.issued | 2010-05-29 | es_ES |
dc.identifier.issn | 1466-8033 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150419 | |
dc.description.abstract | [EN] The structures of the series of N,N¿-1,n-phenylenebis(oxamic acid ethyl ester) molecules with n = 2 (H2Et2opba, 1), 3 (H2Et2mpba, 2), and 4 (H2Et2ppba, 3) have been determined by single-crystal X-ray diffraction (XRD) methods. Density functional (DF) calculations have been performed on the simplest model system N-phenyloxamic acid methyl ester (HMepma). Compounds 1¿3 have either folded (H2Et2opba), bent (H2Et2mpba), or linear (H2Et2ppba) almost planar (periplanar) molecular configurations with the two oxalamide moieties being slightly tilted up and down, respectively, with respect to the benzene ring. The energy calculations as a function of the torsion angle (¿) around the N(amide)¿C(benzene) bond for HMepma reveal that the minimum energy syn and anti periplanar conformations of the carboxamide functions are more stable than the corresponding syn and anti planar ones (¿ = 0 and 180°) by 0.18 and 0.13 kcal mol¿1, respectively. The calculated ¿ values for the syn and anti periplanar minimized conformers of HMepma are 16.0 and 200.0°, respectively, in reasonable agreement with the experimental values for 1¿3 [¿ = 39.0(4) and 225.0(3) (H2Et2opba), 32.6(5) (H2Et2mpba), and 34.7(2)° (H2Et2ppba)]. This situation likely minimizes the forced repulsive interactions between the amide hydrogen and the nearest benzene hydrogen atoms while it maximizes the attractive interactions between the carbonyl amide oxygen and the nearest benzene hydrogen atoms, which are then implicated in a relatively weak, intramolecular C¿H(benzene)¿O[double bond, length as m-dash]C(amide) hydrogen bond [d(H¿O) = 2.45(2)¿2.57(2) Å]. A supramolecular aggregation of molecules into either a duplex (H2Et2opba) or a brick-wall sheet (H2Et2ppba) occurs for 1 and 3, respectively, through moderately strong, intermolecular N¿H(amide)¿O[double bond, length as m-dash]C(amide) hydrogen bonds [d¿(H¿O) = 2.17(2)¿2.37(2) Å]. By contrast, moderately weak, intermolecular N¿H(amide)¿O[double bond, length as m-dash]C(ester) hydrogen bonds between the H2Et2mpba molecules are involved in 2 to give a meso-helical chain with a unique hydrogen-bonded oxalamide acid ester dimeric unit. The energy calculations as a function of the intermolecular N¿H(amide)¿O[double bond, length as m-dash]C(ester) hydrogen bond distance (d¿) for the {HMepma}2 dimer show an energy minimum at 2.37 Å, in excellent agreement with the experimental value of 2 [d¿(H¿O) = 2.42(4) Å]. The calculated value of the hydrogen bond energy for {HMepma}2 (EHB = 4.83 kcal mol¿1) is consistent with a partially covalent nature of the interaction between the amide hydrogen and the carbonyl ester oxygen atoms, as confirmed by the existence of a significant electron density delocalization within the resulting four-center H2O2 diamond core. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Educacion y Ciencia (Spain) (projects CTQ2006-14199 and CTQ2007-61690) and the Generalitat Valenciana (Spain) (project PROMETEO/2009/108). We thank Prof. Miguel Julve and Jose Antonio Real for continuous interest in this work and fruitful discussions during the preparation of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | CrystEngComm | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Topological control in the hydrogen bond-directed self-asembly of ortho-, meta-, and para-phenylene-substituted dioxamic acid diethyl esters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c001682a | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CTQ2007-61690/ES/MAGNETISMO MOLECULAR: SINTESIS RAZONADA, CARACTERIZACION ESTRUCTURAL Y ESTUDIO DE PROPIEDADES MAGNETICAS DE COMPLEJOS MONO- Y POLINUCLEARES CON IONES DE METALES DE TRANSICION Y LANTANIDOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CTQ2006-14200/ES/DISEÑO Y SINTESIS DE NUEVOS LIGANDOS DE TIPO HIDROXIAMIDA Y OXAZOLINA DERIVADOS DEL ACIDO MANDELICO. APLICACION EN REACCIONES CATALITICAS ENANTIOSELECTIVAS DE FORMACION DE ENLACES CARBONO-CARBONO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F108/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Muñoz Roca, MDC.; Blay, G.; Fernández, I.; Pedro, JR.; Carrasco, R.; Castellano, M.; Ruiz-García, R.... (2010). Topological control in the hydrogen bond-directed self-asembly of ortho-, meta-, and para-phenylene-substituted dioxamic acid diethyl esters. CrystEngComm. 12(8):2473-2484. https://doi.org/10.1039/c001682a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c001682a | es_ES |
dc.description.upvformatpinicio | 2473 | es_ES |
dc.description.upvformatpfin | 2484 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\38950 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Lawrence, D. S., Jiang, T., & Levett, M. (1995). Self-Assembling Supramolecular Complexes. Chemical Reviews, 95(6), 2229-2260. doi:10.1021/cr00038a018 | es_ES |
dc.description.references | Brunsveld, L., Folmer, B. J. B., Meijer, E. W., & Sijbesma, R. P. (2001). Supramolecular Polymers. Chemical Reviews, 101(12), 4071-4098. doi:10.1021/cr990125q | es_ES |
dc.description.references | Etter, M. C. (1990). Encoding and decoding hydrogen-bond patterns of organic compounds. Accounts of Chemical Research, 23(4), 120-126. doi:10.1021/ar00172a005 | es_ES |
dc.description.references | Aakeröy, C. B., & Seddon, K. R. (1993). The hydrogen bond and crystal engineering. Chem. Soc. Rev., 22(6), 397-407. doi:10.1039/cs9932200397 | es_ES |
dc.description.references | Desiraju, G. R. (1995). Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angewandte Chemie International Edition in English, 34(21), 2311-2327. doi:10.1002/anie.199523111 | es_ES |
dc.description.references | Whitesides, G. M., Simanek, E. E., Mathias, J. P., Seto, C. T., Chin, D., Mammen, M., & Gordon, D. M. (1995). Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates. Accounts of Chemical Research, 28(1), 37-44. doi:10.1021/ar00049a006 | es_ES |
dc.description.references | Rebek, J. (1996). Assembly and encapsulation with self-complementary molecules. Chemical Society Reviews, 25(4), 255. doi:10.1039/cs9962500255 | es_ES |
dc.description.references | Stang, P. J., & Olenyuk, B. (1997). Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra. Accounts of Chemical Research, 30(12), 502-518. doi:10.1021/ar9602011 | es_ES |
dc.description.references | Fujita, M. (1999). Self-Assembly of [2]Catenanes Containing Metals in Their Backbones. Accounts of Chemical Research, 32(1), 53-61. doi:10.1021/ar9701068 | es_ES |
dc.description.references | Caulder, D. L., & Raymond, K. N. (1999). Supermolecules by Design. Accounts of Chemical Research, 32(11), 975-982. doi:10.1021/ar970224v | es_ES |
dc.description.references | Swiegers, G. F., & Malefetse, T. J. (2000). New Self-Assembled Structural Motifs in Coordination Chemistry. Chemical Reviews, 100(9), 3483-3538. doi:10.1021/cr990110s | es_ES |
dc.description.references | Steel, P. J. (2005). Ligand Design in Multimetallic Architectures: Six Lessons Learned. Accounts of Chemical Research, 38(4), 243-250. doi:10.1021/ar040166v | es_ES |
dc.description.references | Burrows, A. D., Chan, C.-W., Chowdhry, M. M., McGrady, J. E., & Mingos, D. M. P. (1995). Multidimensional crystal engineering of bifunctional metal complexes containing complementary triple hydrogen bonds. Chemical Society Reviews, 24(5), 329. doi:10.1039/cs9952400329 | es_ES |
dc.description.references | Tadokoro, M., & Nakasuji, K. (2000). Hydrogen bonded 2,2′-biimidazolate transition metal complexes as a tool of crystal engineering. Coordination Chemistry Reviews, 198(1), 205-218. doi:10.1016/s0010-8545(99)00223-4 | es_ES |
dc.description.references | Ruiz, R., Faus, J., Lloret, F., Julve, M., & Journaux, Y. (1999). Coordination chemistry of N,N′-bis(coordinating group substituted)oxamides: a rational design of nuclearity tailored polynuclear complexes. Coordination Chemistry Reviews, 193-195, 1069-1117. doi:10.1016/s0010-8545(99)00138-1 | es_ES |
dc.description.references | Pardo, E., Ruiz-García, R., Cano, J., Ottenwaelder, X., Lescouëzec, R., Journaux, Y., … Julve, M. (2008). Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective. Dalton Transactions, (21), 2780. doi:10.1039/b801222a | es_ES |
dc.description.references | Cervera, B., Sanz, J. L., Ibáñez, M. J., Vila, G., LLoret, F., Julve, M., … Muñoz, M. C. (1998). Stabilization of copper(III) complexes by substituted oxamate ligands. Journal of the Chemical Society, Dalton Transactions, (5), 781-790. doi:10.1039/a706964b | es_ES |
dc.description.references | Fernández, I., Ruiz, R., Faus, J., Julve, M., Lloret, F., Cano, J., … Muñoz, M. C. (2001). Ferromagnetic Coupling through Spin Polarization in a Dinuclear Copper(II) Metallacyclophane. Angewandte Chemie International Edition, 40(16), 3039-3042. doi:10.1002/1521-3773(20010817)40:16<3039::aid-anie3039>3.0.co;2-p | es_ES |
dc.description.references | Pardo, E., Faus, J., Julve, M., Lloret, F., Muñoz, M. C., Cano, J., … Ruiz-García, R. (2003). Long-Range Magnetic Coupling through Extended π-Conjugated Aromatic Bridges in Dinuclear Copper(II) Metallacyclophanes. Journal of the American Chemical Society, 125(36), 10770-10771. doi:10.1021/ja030060f | es_ES |
dc.description.references | Frkanec, L., & Žinić, M. (2010). Chiral bis(amino acid)- and bis(amino alcohol)-oxalamidegelators. Gelation properties, self-assembly motifs and chirality effects. Chem. Commun., 46(4), 522-537. doi:10.1039/b920353m | es_ES |
dc.description.references | Blay, G., Fernández, I., Pedro, J. R., Ruiz-García, R., Muñoz, M. C., Cano, J., & Carrasco, R. (2003). A Hydrogen-Bonded Supramolecular meso-Helix. European Journal of Organic Chemistry, 2003(9), 1627-1630. doi:10.1002/ejoc.200200544 | es_ES |
dc.description.references | Martín, S., Beitia, J. I., Ugalde, M., Vitoria, P., & Cortés, R. (2002). DiethylN,N′-o-phenylenedioxamate. Acta Crystallographica Section E Structure Reports Online, 58(8), o913-o915. doi:10.1107/s1600536802012849 | es_ES |
dc.description.references | Padilla-Martínez, I. I., Chaparro-Huerta, M., Martínez-Martínez, F. J., Höpfl, H., & García-Báez, E. V. (2003). DiethylN,N′-m-phenylenedioxamate. Acta Crystallographica Section E Structure Reports Online, 59(6), o825-o827. doi:10.1107/s1600536803010225 | es_ES |
dc.description.references | Yang, W., & Liu, X. (2008). DiethylN,N′-(p-phenylene)dioxamate. Acta Crystallographica Section E Structure Reports Online, 64(9), o1852-o1852. doi:10.1107/s1600536808027190 | es_ES |
dc.description.references | Coe, S., Kane, J. J., Nguyen, T. L., Toledo, L. M., Wininger, E., Fowler, F. W., & Lauher, J. W. (1997). Molecular Symmetry and the Design of Molecular Solids: The Oxalamide Functionality as a Persistent Hydrogen Bonding Unit. Journal of the American Chemical Society, 119(1), 86-93. doi:10.1021/ja961958q | es_ES |
dc.description.references | Luong Nguyen, T., Scott, A., Dinkelmeyer, B., Fowler, F. W., & Lauher, J. W. (1998). Design of molecular solids: utility of the hydroxyl functionality as a predictable design element. New Journal of Chemistry, 22(2), 129-135. doi:10.1039/a707642h | es_ES |
dc.description.references | Nguyen, T. L., Fowler, F. W., & Lauher, J. W. (2001). Commensurate and Incommensurate Hydrogen Bonds. An Exercise in Crystal Engineering. Journal of the American Chemical Society, 123(44), 11057-11064. doi:10.1021/ja016635v | es_ES |
dc.description.references | Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallographica Section A Foundations of Crystallography, 46(6), 467-473. doi:10.1107/s0108767390000277 | es_ES |
dc.description.references | Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 | es_ES |
dc.description.references | Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096 | es_ES |
dc.description.references | Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146 | es_ES |
dc.description.references | Mulliken, R. S. (1962). Criteria for the Construction of Good Self‐Consistent‐Field Molecular Orbital Wave Functions, and the Significance of LCAO‐MO Population Analysis. The Journal of Chemical Physics, 36(12), 3428-3439. doi:10.1063/1.1732476 | es_ES |
dc.description.references | Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009 | es_ES |
dc.description.references | Dunitz, J. D., & Bernstein, J. (1995). Disappearing Polymorphs. Accounts of Chemical Research, 28(4), 193-200. doi:10.1021/ar00052a005 | es_ES |
dc.description.references | Steiner, T. (2002). The Hydrogen Bond in the Solid State. Angewandte Chemie International Edition, 41(1), 48-76. doi:10.1002/1521-3773(20020104)41:1<48::aid-anie48>3.0.co;2-u | es_ES |
dc.description.references | Brunsveld, L., Prince, R. B., Meijer, E. W., & Moore, J. S. (2000). Conformational Ordering of Apolar, Chiralm-Phenylene Ethynylene Oligomers. Organic Letters, 2(11), 1525-1528. doi:10.1021/ol0056877 | es_ES |
dc.description.references | Phillips, K. E. S., Katz, T. J., Jockusch, S., Lovinger, A. J., & Turro, N. J. (2001). Synthesis and Properties of an Aggregating Heterocyclic Helicene. Journal of the American Chemical Society, 123(48), 11899-11907. doi:10.1021/ja011706b | es_ES |
dc.description.references | Bartlett, R. A., Olmstead, M. M., & Power, P. P. (1986). Structural characterization of the solvate complexes of the lithium diorganophosphides [{Li(Et2O)PPh2}.infin.], [{Li(THF)2PPh2}.infin.], and [{Li(THF)P(C6H11)2}.infin.]. Inorganic Chemistry, 25(8), 1243-1247. doi:10.1021/ic00228a034 | es_ES |
dc.description.references | Becker, G., Eschbach, B., Mundt, O., & Seidler, N. (1994). Metallderivate von Molek�lverbindungen. VIII.catena-Poly[(2,5,8-trioxanonan-O2,O5) lithium-methylphosphanid] ? eine Verbindung mitmeso-Helix-Struktur. Zeitschrift f�r anorganische und allgemeine Chemie, 620(8), 1381-1390. doi:10.1002/zaac.19946200810 | es_ES |
dc.description.references | Plasseraud, L., Maid, H., Hampel, F., & Saalfrank, R. W. (2001). A meso-Helical Coordination Polymer from Achiral Dinuclear [Cu2(H3CCN)2(μ-pydz)3][PF6]2 and 1,3-Bis(diphenylphosphanyl)propane—Synthesis and Crystal Structure of{[Cu(μ-pydz)2][PF6]} (pydz=pyridazine). Chemistry - A European Journal, 7(18), 4007-4011. doi:10.1002/1521-3765(20010917)7:18<4007::aid-chem4007>3.0.co;2-j | es_ES |
dc.description.references | Lehn, J. M., Rigault, A., Siegel, J., Harrowfield, J., Chevrier, B., & Moras, D. (1987). Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. Proceedings of the National Academy of Sciences, 84(9), 2565-2569. doi:10.1073/pnas.84.9.2565 | es_ES |
dc.description.references | Rowan, A. E., & Nolte, R. J. M. (1998). Helical Molecular Programming. Angewandte Chemie International Edition, 37(1-2), 63-68. doi:10.1002/(sici)1521-3773(19980202)37:1/2<63::aid-anie63>3.0.co;2-4 | es_ES |
dc.description.references | Shii, Y., Motoda, Y., Matsuo, T., Kai, F., Nakashima, T., Tuchagues, J.-P., & Matsumoto, N. (1999). Deprotonation-Induced Enantioselective Aggregation and Deprotonation-Induced Ligand Rearrangement of Copper(II) Complexes Yield 1D Homochiral and Heterochiral Chains and a Cyclic Tetramer, Respectively. Inorganic Chemistry, 38(15), 3513-3522. doi:10.1021/ic9813260 | es_ES |
dc.description.references | Zhang, Y., Li, J., Chen, J., Su, Q., Deng, W., Nishiura, M., … Wang, Q. (2000). A Novel α-Helix-Liked Metallohelicate Series and Their Structural Adjustments for the Isomorphous Substitution. Inorganic Chemistry, 39(11), 2330-2336. doi:10.1021/ic990911d | es_ES |
dc.description.references | Ellis, W. W., Schmitz, M., Arif, A. A., & Stang, P. J. (2000). Preparation, Characterization, and X-ray Crystal Structures of Helical and Syndiotactic Zinc-Based Coordination Polymers. Inorganic Chemistry, 39(12), 2547-2557. doi:10.1021/ic991315m | es_ES |
dc.description.references | Tabellion, F. M., Seidel, S. R., Arif, A. M., & Stang, P. J. (2001). A Novel, Tunable Manganese Coordination System Based on a Flexible «Spacer» Unit: Noncovalent Templation Effects. Journal of the American Chemical Society, 123(48), 11982-11990. doi:10.1021/ja0114310 | es_ES |
dc.description.references | Öhrström, L., Larsson, K., Borg, S., & Norberg, S. T. (2001). Crucial Influence of Solvent and Chirality—The Formation of Helices and Three-Dimensional Nets by Hydrogen-Bonded Biimidazolate Complexes. Chemistry - A European Journal, 7(22), 4805-4810. doi:10.1002/1521-3765(20011119)7:22<4805::aid-chem4805>3.0.co;2-3 | es_ES |
dc.description.references | Albrecht, M. (2001). «Let»s Twist Again’Double-Stranded, Triple-Stranded, and Circular Helicates. Chemical Reviews, 101(11), 3457-3498. doi:10.1021/cr0103672 | es_ES |