Mostrar el registro sencillo del ítem
dc.contributor.author | Lago, M. A. | es_ES |
dc.contributor.author | Rupérez Moreno, María José | es_ES |
dc.contributor.author | Martínez Martínez, Francisco | es_ES |
dc.contributor.author | Martinez-Sanchis, Sandra | es_ES |
dc.contributor.author | Bakic, P.R. | es_ES |
dc.contributor.author | Monserrat, C. | es_ES |
dc.date.accessioned | 2020-09-19T03:34:00Z | |
dc.date.available | 2020-09-19T03:34:00Z | |
dc.date.issued | 2015-11-30 | es_ES |
dc.identifier.issn | 0957-4174 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150431 | |
dc.description.abstract | [EN] This paper presents a novel methodology to in-vivo estimate the elastic constants of a constitutive model proposed to characterize the mechanical behavior of the breast tissues. An iterative search algorithm based on genetic heuristics was constructed to in-vivo estimate these parameters using only medical images, thus avoiding invasive measurements of the mechanical response of the breast tissues. For the first time, a combination of overlap and distance coefficients were used for the evaluation of the similar- ity between a deformed MRI of the breast and a simulation of that deformation. The methodology was validated using breast software phantoms for virtual clinical trials, compressed to mimic MRI-guided biopsies. The biomechanical model chosen to characterize the breast tissues was an anisotropic neo-Hookean hyperelastic model. Results from this analysis showed that the algorithm is able to find the elastic constants of the constitutive equations of the proposed model with a mean relative error of about 10%. Furthermore, the overlap between the reference deformation and the simulated deformation was of around 95% showing the good performance of the proposed methodology. This methodology can be easily extended to characterize the real biomechanical behavior of the breast tissues, which means a great novelty in the field of the simulation of the breast behavior for applications such as surgical planing, surgical guidance or cancer diagnosis. This reveals the impact and relevance of the presented work. | es_ES |
dc.description.sponsorship | This project has been funded by MECD (reference AP2009-2414) and US National Institutes of Health (R01 Grant #CA154444), and the US National Science Foundation (III Grant #0916690). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, and NSF. The authors of this manuscript have no conflict of interest with the presented work | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Expert Systems with Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Genetic heuristics | es_ES |
dc.subject | In-vivo tissue characterization | es_ES |
dc.subject | Breast biomechanical modeling | es_ES |
dc.subject | Parameter estimation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Methodology based on genetic heuristics for in-vivo characterizing the patient-specific biomechanical behavior of the breast tissues | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.eswa.2015.05.058 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//CA154444/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//0916690/US/III: Small: Collaborative Research: Modeling, Detection, and Analysis of Branching Structures in Medical Imaging/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ME//AP2009-2414/ES/AP2009-2414/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Lago, MA.; Rupérez Moreno, MJ.; Martínez Martínez, F.; Martinez-Sanchis, S.; Bakic, P.; Monserrat, C. (2015). Methodology based on genetic heuristics for in-vivo characterizing the patient-specific biomechanical behavior of the breast tissues. Expert Systems with Applications. 42(21):7942-7950. https://doi.org/10.1016/j.eswa.2015.05.058 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.eswa.2015.05.058 | es_ES |
dc.description.upvformatpinicio | 7942 | es_ES |
dc.description.upvformatpfin | 7950 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 21 | es_ES |
dc.identifier.pmid | 27103760 | es_ES |
dc.identifier.pmcid | PMC4834716 | es_ES |
dc.relation.pasarela | S\292012 | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |