- -

Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Suárez, Ana es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.contributor.author Guerra, Jose M. es_ES
dc.contributor.author Gerardo-Giorda, Luca es_ES
dc.date.accessioned 2020-09-19T03:34:36Z
dc.date.available 2020-09-19T03:34:36Z
dc.date.issued 2016-03-03 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150452
dc.description.abstract [EN] Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. es_ES
dc.description.sponsorship This work was supported in part by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323, and also by the Spanish "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" under Grant TEC2014-52383-C3-R (TEC2014-52383-C3-1-R) and Grant MTM201569992-R. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was supported in part by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323, and also by the Spanish "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" under Grant TEC2014-52383-C3-R (TEC2014-52383-C3-1-R) and Grant MTM2015-69992-R es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0150356 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2013-0323/ES/-/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2015-69992-R/ES/MODELIZACION Y APROXIMACION NUMERICA ELECTRO-METABOLICA DEL CEREBRO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation González-Suárez, A.; Berjano, E.; Guerra, JM.; Gerardo-Giorda, L. (2016). Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction. PLoS ONE. 11(3):1-18. https://doi.org/10.1371/journal.pone.0150356 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0150356 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 26938638 es_ES
dc.identifier.pmcid PMC4777505 es_ES
dc.relation.pasarela S\303675 es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references DEMOLIN, J. M., EICK, O. J., MUNCH, K., KOULLICK, E., NAKAGAWA, H., & WITTKAMPF, F. H. M. (2002). Soft Thrombus Formation in Radiofrequency Catheter Ablation. Pacing and Clinical Electrophysiology, 25(8), 1219-1222. doi:10.1046/j.1460-9592.2002.01219.x es_ES
dc.description.references MATSUDAIRA, K., NAKAGAWA, H., WITTKAMPF, F. H. M., YAMANASHI, W. S., IMAI, S., PITHA, J. V., … JACKMAN, W. M. (2003). High Incidence of Thrombus Formation Without Impedance Rise During Radiofrequency Ablation Using Electrode Temperature Control. Pacing and Clinical Electrophysiology, 26(5), 1227-1237. doi:10.1046/j.1460-9592.2003.t01-1-00173.x es_ES
dc.description.references WOOD, M. A., GOLDBERG, S. M., PARVEZ, B., PATHAK, V., HOLLAND, K., ELLENBOGEN, A. L., … GOEL, A. (2009). Effect of Electrode Orientation on Lesion Sizes Produced by Irrigated Radiofrequency Ablation Catheters. Journal of Cardiovascular Electrophysiology, 20(11), 1262-1268. doi:10.1111/j.1540-8167.2009.01538.x es_ES
dc.description.references EVERETT IV, T. H., LEE, K. W., WILSON, E. E., GUERRA, J. M., VAROSY, P. D., & OLGIN, J. E. (2008). Safety Profiles and Lesion Size of Different Radiofrequency Ablation Technologies: A Comparison of Large Tip, Open and Closed Irrigation Catheters. Journal of Cardiovascular Electrophysiology, 20(3), 325-335. doi:10.1111/j.1540-8167.2008.01305.x es_ES
dc.description.references Demazumder, D., Mirotznik, M. S., & Schwartzman, D. (2001). Journal of Interventional Cardiac Electrophysiology, 5(4), 377-389. doi:10.1023/a:1013224110550 es_ES
dc.description.references Yokoyama, K., Nakagawa, H., Wittkampf, F. H. M., Pitha, J. V., Lazzara, R., & Jackman, W. M. (2006). Comparison of Electrode Cooling Between Internal and Open Irrigation in Radiofrequency Ablation Lesion Depth and Incidence of Thrombus and Steam Pop. Circulation, 113(1), 11-19. doi:10.1161/circulationaha.105.540062 es_ES
dc.description.references Yokoyama, K., Nakagawa, H., Shah, D. C., Lambert, H., Leo, G., Aeby, N., … Jackman, W. M. (2008). Novel Contact Force Sensor Incorporated in Irrigated Radiofrequency Ablation Catheter Predicts Lesion Size and Incidence of Steam Pop and Thrombus. Circulation: Arrhythmia and Electrophysiology, 1(5), 354-362. doi:10.1161/circep.108.803650 es_ES
dc.description.references Nakagawa H. Comparison of 12 and 56 hole electrodes for open irrigated radiofrequency ablation in a canine thigh muscle preparation: improvement in thrombus reduction with 56 small irrigation holes. <italic>Biosense Webster</italic> 2010. es_ES
dc.description.references WEISS, C., ANTZ, M., EICK, O., ESHAGZAIY, K., MEINERTZ, T., & WILLEMS, S. (2002). Radiofrequency Catheter Ablation Using Cooled Electrodes: Impact of Irrigation Flow Rate and Catheter Contact Pressure on Lesion Dimensions. Pacing and Clinical Electrophysiology, 25(4), 463-469. doi:10.1046/j.1460-9592.2002.00463.x es_ES
dc.description.references PÉREZ, J. J., D’AVILA, A., ARYANA, A., & BERJANO, E. (2015). Electrical and Thermal Effects of Esophageal Temperature Probes on Radiofrequency Catheter Ablation of Atrial Fibrillation: Results from a Computational Modeling Study. Journal of Cardiovascular Electrophysiology, 26(5), 556-564. doi:10.1111/jce.12630 es_ES
dc.description.references Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219 es_ES
dc.description.references Gopalakrishnan, J. (2002). A Mathematical Model for Irrigated Epicardial Radiofrequency Ablation. Annals of Biomedical Engineering, 30(7), 884-893. doi:10.1114/1.1507845 es_ES
dc.description.references Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051 es_ES
dc.description.references JAIN, M. K., TOMASSONI, G., RILEY, R. E., & WOLF, P. D. (1998). Effect of Skin Electrode Location on Radiofrequency Ablation Lesions: An In Vivo and a Three-Dimensional Finite Element Study. Journal of Cardiovascular Electrophysiology, 9(12), 1325-1335. doi:10.1111/j.1540-8167.1998.tb00108.x es_ES
dc.description.references Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 es_ES
dc.description.references Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 es_ES
dc.description.references HAINES, D. E., & WATSON, D. D. (1989). Tissue Heating During Radiofrequency Catheter Ablation: A Thermodynamic Model and Observations in Isolated Perfused and Superfused Canine Right Ventricular Free Wall. Pacing and Clinical Electrophysiology, 12(6), 962-976. doi:10.1111/j.1540-8159.1989.tb05034.x es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Berjano, E. J. (2006). Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. BioMedical Engineering OnLine, 5(1). doi:10.1186/1475-925x-5-24 es_ES
dc.description.references Nakagawa, H., Wittkampf, F. H. M., Yamanashi, W. S., Pitha, J. V., Imai, S., Campbell, B., … Jackman, W. M. (1998). Inverse Relationship Between Electrode Size and Lesion Size During Radiofrequency Ablation With Active Electrode Cooling. Circulation, 98(5), 458-465. doi:10.1161/01.cir.98.5.458 es_ES
dc.description.references Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 es_ES
dc.description.references Jain, M. K., & Wolf, P. D. (1999). Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Transactions on Biomedical Engineering, 46(12), 1405-1412. doi:10.1109/10.804568 es_ES
dc.description.references NGUYEN, D. T., OLSON, M., ZHENG, L., BARHAM, W., MOSS, J. D., & SAUER, W. H. (2015). Effect of Irrigant Characteristics on Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters with Actively Cooled Tips. Journal of Cardiovascular Electrophysiology, 26(7), 792-798. doi:10.1111/jce.12682 es_ES
dc.description.references Hong Cao, Vorperian, V. R., Tungjitkusolmun, S., Jan-Zern Tsai, Haemmerich, D., Young Bin Choy, & Webster, J. G. (2001). Flow effect on lesion formation in RF cardiac catheter ablation. IEEE Transactions on Biomedical Engineering, 48(4), 425-433. doi:10.1109/10.915708 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem