Mostrar el registro sencillo del ítem
dc.contributor.author | González-Suárez, Ana | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.contributor.author | Guerra, Jose M. | es_ES |
dc.contributor.author | Gerardo-Giorda, Luca | es_ES |
dc.date.accessioned | 2020-09-19T03:34:36Z | |
dc.date.available | 2020-09-19T03:34:36Z | |
dc.date.issued | 2016-03-03 | es_ES |
dc.identifier.issn | 1932-6203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150452 | |
dc.description.abstract | [EN] Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. | es_ES |
dc.description.sponsorship | This work was supported in part by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323, and also by the Spanish "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" under Grant TEC2014-52383-C3-R (TEC2014-52383-C3-1-R) and Grant MTM201569992-R. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was supported in part by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323, and also by the Spanish "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" under Grant TEC2014-52383-C3-R (TEC2014-52383-C3-1-R) and Grant MTM2015-69992-R | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0150356 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2013-0323/ES/-/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-69992-R/ES/MODELIZACION Y APROXIMACION NUMERICA ELECTRO-METABOLICA DEL CEREBRO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | González-Suárez, A.; Berjano, E.; Guerra, JM.; Gerardo-Giorda, L. (2016). Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction. PLoS ONE. 11(3):1-18. https://doi.org/10.1371/journal.pone.0150356 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1371/journal.pone.0150356 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 26938638 | es_ES |
dc.identifier.pmcid | PMC4777505 | es_ES |
dc.relation.pasarela | S\303675 | es_ES |
dc.contributor.funder | Gobierno Vasco/Eusko Jaurlaritza | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | DEMOLIN, J. M., EICK, O. J., MUNCH, K., KOULLICK, E., NAKAGAWA, H., & WITTKAMPF, F. H. M. (2002). Soft Thrombus Formation in Radiofrequency Catheter Ablation. Pacing and Clinical Electrophysiology, 25(8), 1219-1222. doi:10.1046/j.1460-9592.2002.01219.x | es_ES |
dc.description.references | MATSUDAIRA, K., NAKAGAWA, H., WITTKAMPF, F. H. M., YAMANASHI, W. S., IMAI, S., PITHA, J. V., … JACKMAN, W. M. (2003). High Incidence of Thrombus Formation Without Impedance Rise During Radiofrequency Ablation Using Electrode Temperature Control. Pacing and Clinical Electrophysiology, 26(5), 1227-1237. doi:10.1046/j.1460-9592.2003.t01-1-00173.x | es_ES |
dc.description.references | WOOD, M. A., GOLDBERG, S. M., PARVEZ, B., PATHAK, V., HOLLAND, K., ELLENBOGEN, A. L., … GOEL, A. (2009). Effect of Electrode Orientation on Lesion Sizes Produced by Irrigated Radiofrequency Ablation Catheters. Journal of Cardiovascular Electrophysiology, 20(11), 1262-1268. doi:10.1111/j.1540-8167.2009.01538.x | es_ES |
dc.description.references | EVERETT IV, T. H., LEE, K. W., WILSON, E. E., GUERRA, J. M., VAROSY, P. D., & OLGIN, J. E. (2008). Safety Profiles and Lesion Size of Different Radiofrequency Ablation Technologies: A Comparison of Large Tip, Open and Closed Irrigation Catheters. Journal of Cardiovascular Electrophysiology, 20(3), 325-335. doi:10.1111/j.1540-8167.2008.01305.x | es_ES |
dc.description.references | Demazumder, D., Mirotznik, M. S., & Schwartzman, D. (2001). Journal of Interventional Cardiac Electrophysiology, 5(4), 377-389. doi:10.1023/a:1013224110550 | es_ES |
dc.description.references | Yokoyama, K., Nakagawa, H., Wittkampf, F. H. M., Pitha, J. V., Lazzara, R., & Jackman, W. M. (2006). Comparison of Electrode Cooling Between Internal and Open Irrigation in Radiofrequency Ablation Lesion Depth and Incidence of Thrombus and Steam Pop. Circulation, 113(1), 11-19. doi:10.1161/circulationaha.105.540062 | es_ES |
dc.description.references | Yokoyama, K., Nakagawa, H., Shah, D. C., Lambert, H., Leo, G., Aeby, N., … Jackman, W. M. (2008). Novel Contact Force Sensor Incorporated in Irrigated Radiofrequency Ablation Catheter Predicts Lesion Size and Incidence of Steam Pop and Thrombus. Circulation: Arrhythmia and Electrophysiology, 1(5), 354-362. doi:10.1161/circep.108.803650 | es_ES |
dc.description.references | Nakagawa H. Comparison of 12 and 56 hole electrodes for open irrigated radiofrequency ablation in a canine thigh muscle preparation: improvement in thrombus reduction with 56 small irrigation holes. <italic>Biosense Webster</italic> 2010. | es_ES |
dc.description.references | WEISS, C., ANTZ, M., EICK, O., ESHAGZAIY, K., MEINERTZ, T., & WILLEMS, S. (2002). Radiofrequency Catheter Ablation Using Cooled Electrodes: Impact of Irrigation Flow Rate and Catheter Contact Pressure on Lesion Dimensions. Pacing and Clinical Electrophysiology, 25(4), 463-469. doi:10.1046/j.1460-9592.2002.00463.x | es_ES |
dc.description.references | PÉREZ, J. J., D’AVILA, A., ARYANA, A., & BERJANO, E. (2015). Electrical and Thermal Effects of Esophageal Temperature Probes on Radiofrequency Catheter Ablation of Atrial Fibrillation: Results from a Computational Modeling Study. Journal of Cardiovascular Electrophysiology, 26(5), 556-564. doi:10.1111/jce.12630 | es_ES |
dc.description.references | Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219 | es_ES |
dc.description.references | Gopalakrishnan, J. (2002). A Mathematical Model for Irrigated Epicardial Radiofrequency Ablation. Annals of Biomedical Engineering, 30(7), 884-893. doi:10.1114/1.1507845 | es_ES |
dc.description.references | Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051 | es_ES |
dc.description.references | JAIN, M. K., TOMASSONI, G., RILEY, R. E., & WOLF, P. D. (1998). Effect of Skin Electrode Location on Radiofrequency Ablation Lesions: An In Vivo and a Three-Dimensional Finite Element Study. Journal of Cardiovascular Electrophysiology, 9(12), 1325-1335. doi:10.1111/j.1540-8167.1998.tb00108.x | es_ES |
dc.description.references | Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 | es_ES |
dc.description.references | Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 | es_ES |
dc.description.references | HAINES, D. E., & WATSON, D. D. (1989). Tissue Heating During Radiofrequency Catheter Ablation: A Thermodynamic Model and Observations in Isolated Perfused and Superfused Canine Right Ventricular Free Wall. Pacing and Clinical Electrophysiology, 12(6), 962-976. doi:10.1111/j.1540-8159.1989.tb05034.x | es_ES |
dc.description.references | Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 | es_ES |
dc.description.references | Berjano, E. J. (2006). Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. BioMedical Engineering OnLine, 5(1). doi:10.1186/1475-925x-5-24 | es_ES |
dc.description.references | Nakagawa, H., Wittkampf, F. H. M., Yamanashi, W. S., Pitha, J. V., Imai, S., Campbell, B., … Jackman, W. M. (1998). Inverse Relationship Between Electrode Size and Lesion Size During Radiofrequency Ablation With Active Electrode Cooling. Circulation, 98(5), 458-465. doi:10.1161/01.cir.98.5.458 | es_ES |
dc.description.references | Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 | es_ES |
dc.description.references | Jain, M. K., & Wolf, P. D. (1999). Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Transactions on Biomedical Engineering, 46(12), 1405-1412. doi:10.1109/10.804568 | es_ES |
dc.description.references | NGUYEN, D. T., OLSON, M., ZHENG, L., BARHAM, W., MOSS, J. D., & SAUER, W. H. (2015). Effect of Irrigant Characteristics on Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters with Actively Cooled Tips. Journal of Cardiovascular Electrophysiology, 26(7), 792-798. doi:10.1111/jce.12682 | es_ES |
dc.description.references | Hong Cao, Vorperian, V. R., Tungjitkusolmun, S., Jan-Zern Tsai, Haemmerich, D., Young Bin Choy, & Webster, J. G. (2001). Flow effect on lesion formation in RF cardiac catheter ablation. IEEE Transactions on Biomedical Engineering, 48(4), 425-433. doi:10.1109/10.915708 | es_ES |