- -

Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramayo-Caldas, Y. es_ES
dc.contributor.author Mach, N. es_ES
dc.contributor.author Esteve-Codina, A. es_ES
dc.contributor.author Corominas, J. es_ES
dc.contributor.author Castelló, A. es_ES
dc.contributor.author Ballester, M. es_ES
dc.contributor.author Estellé, J. es_ES
dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.contributor.author Fernández, A.I. es_ES
dc.contributor.author Pérez-Enciso, M. es_ES
dc.contributor.author Folch, J.M. es_ES
dc.date.accessioned 2020-09-19T03:34:57Z
dc.date.available 2020-09-19T03:34:57Z
dc.date.issued 2012-10-11 es_ES
dc.identifier.issn 1471-2164 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150457
dc.description.abstract [EN] Background: New advances in high-throughput technologies have allowed for the massive analysis of genomic data, providing new opportunities for the characterization of the transcriptome architectures. Recent studies in pigs have employed RNA-Seq to explore the transcriptome of different tissues in a reduced number of animals. The main goal of this study was the identification of differentially-expressed genes in the liver of Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition using RNA-Seq. Results: The liver transcriptomes of two female groups (H and L) with phenotypically extreme intramuscular fatty acid composition were sequenced using RNA-Seq. A total of 146 and 180 unannotated protein-coding genes were identified in intergenic regions for the L and H groups, respectively. In addition, a range of 5.8 to 7.3% of repetitive elements was found, with SINEs being the most abundant elements. The expression in liver of 186 (L) and 270 (H) lncRNAs was also detected. The higher reproducibility of the RNA-Seq data was validated by RT-qPCR and porcine expression microarrays, therefore showing a strong correlation between RT-qPCR and RNA-Seq data (ranking from 0.79 to 0.96), as well as between microarrays and RNA-Seq (r=0.72). A differential expression analysis between H and L animals identified 55 genes differentially-expressed between groups. Pathways analysis revealed that these genes belong to biological functions, canonical pathways and three gene networks related to lipid and fatty acid metabolism. In concordance with the phenotypic classification, the pathways analysis inferred that linolenic and arachidonic acids metabolism was altered between extreme individuals. In addition, a connection was observed among the top three networks, hence suggesting that these genes are interconnected and play an important role in lipid and fatty acid metabolism. Conclusions: In the present study RNA-Seq was used as a tool to explore the liver transcriptome of pigs with extreme phenotypes for intramuscular fatty acid composition. The differential gene expression analysis showed potential gene networks which affect lipid and fatty acid metabolism. These results may help in the design of selection strategies to improve the sensorial and nutritional quality of pork meat. es_ES
dc.description.sponsorship This work was funded by MICINN projects AGL2008-04818-C03/GAN and AGL2011-29821-C02 (Ministerio de Economia y Competitividad), and by the Innovation Consolider-Ingenio 2010 Program (CSD2007-00036, Centre for Research in Agrigenomics). Y. Ramayo-Caldas was funded by a FPU PhD grant from the Spanish Ministerio de Educacion (AP2008-01450), J. Corominas was funded by a FPI PhD grant from the Spanish Ministerio de Educacion (BES-2009-018223), A. Esteve-Codina is recipient of a FPI PhD fellowship from the Ministerio de Educacion (BES-2008-005772), Spain. This manuscript has been proofread by Mrs. Valma Ruth Dunstan, BA, BEdSt, CELTA, MA (TESOL), a native English-speaker and instructor of English at the University of Queensland (Brisbane, Australia). es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Genomics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Rich dietary-fat es_ES
dc.subject Meat quality es_ES
dc.subject RNA-Seq es_ES
dc.subject Peroxisome proliferator es_ES
dc.subject Increasing amounts es_ES
dc.subject Lipid-Metabolism es_ES
dc.subject Gene-Expression es_ES
dc.subject Copy number es_ES
dc.subject PPAR-Alpha es_ES
dc.subject Quantification es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1471-2164-13-547 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-04818-C03-03/ES/GENES CANDIDATOS E IDENTIFICACION GENOMICA DE LOCI Y RUTAS GENICAS QUE AFECTAN A LA CALIDAD DE LA CARNE EN CERDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-04818-C03-02/ES/GENES CANDIDATOS E IDENTIFICACION GENOMICA DE LOCI Y RUTAS GENETICAS QUE AFECTAN A LA CALIDAD DE LA CARNE EN CERDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//AP2008-01450/ES/AP2008-01450/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-04818-C03-01/ES/GENES CANDIDATOS E IDENTIFICACION GENOMICA DE LOCI Y RUTAS GENETICAS QUE AFECTAN A LA CALIDAD DE LA CARNE EN CERDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00036/ES/Centro de Genómica Básica y de orientación Agroalimentaria/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-29821-C02-02/ES/APLICACION DE METODOS DE SECUENCIACION PARALELA MASIVA Y GENOMICA AL ESTUDIO DE VARIANTES GENICAS QUE REGULAN:CRECIMIENTO,CONFORMACION Y CALIDAD DE CARNE EN CERDO.SUBPROYECTO2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2009-018223-2/ES/BES-2009-018223-2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2008-005772/ES/BES-2008-005772/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Ramayo-Caldas, Y.; Mach, N.; Esteve-Codina, A.; Corominas, J.; Castelló, A.; Ballester, M.; Estellé, J.... (2012). Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genomics. 13:1-18. https://doi.org/10.1186/1471-2164-13-547 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/1471-2164-13-547 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.identifier.pmid 23051667 es_ES
dc.identifier.pmcid PMC3478172 es_ES
dc.relation.pasarela S\395265 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bauman, D. E., Mather, I. H., Wall, R. J., & Lock, A. L. (2006). Major Advances Associated with the Biosynthesis of Milk. Journal of Dairy Science, 89(4), 1235-1243. doi:10.3168/jds.s0022-0302(06)72192-0 es_ES
dc.description.references Wood, J. ., Richardson, R. ., Nute, G. ., Fisher, A. ., Campo, M. ., Kasapidou, E., … Enser, M. (2004). Effects of fatty acids on meat quality: a review. Meat Science, 66(1), 21-32. doi:10.1016/s0309-1740(03)00022-6 es_ES
dc.description.references Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., … Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343-358. doi:10.1016/j.meatsci.2007.07.019 es_ES
dc.description.references Estévez, M., Morcuende, D., & Cava López, R. (2003). Physico-chemical characteristics of M. Longissimus dorsi from three lines of free-range reared Iberian pigs slaughtered at 90 kg live-weight and commercial pigs: a comparative study. Meat Science, 64(4), 499-506. doi:10.1016/s0309-1740(02)00228-0 es_ES
dc.description.references Casellas, J., Noguera, J. L., Reixach, J., Díaz, I., Amills, M., & Quintanilla, R. (2010). Bayes factor analyses of heritability for serum and muscle lipid traits in Duroc pigs1. Journal of Animal Science, 88(7), 2246-2254. doi:10.2527/jas.2009-2205 es_ES
dc.description.references Ntawubizi, M., Colman, E., Janssens, S., Raes, K., Buys, N., & De Smet, S. (2010). Genetic parameters for intramuscular fatty acid composition and metabolism in pigs1. Journal of Animal Science, 88(4), 1286-1294. doi:10.2527/jas.2009-2355 es_ES
dc.description.references Mourot, J., Kouba, M., & Peiniau, P. (1995). Comparative study of in vitro lipogenesis in various adipose tissues in the growing domestic pig (Sus domesticus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 111(3), 379-384. doi:10.1016/0305-0491(95)00005-s es_ES
dc.description.references Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9), 1509-1517. doi:10.1101/gr.079558.108 es_ES
dc.description.references Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. doi:10.1038/nmeth.1226 es_ES
dc.description.references Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12(7), 499-510. doi:10.1038/nrg3012 es_ES
dc.description.references Cánovas, A., Rincon, G., Islas-Trejo, A., Wickramasinghe, S., & Medrano, J. F. (2010). SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mammalian Genome, 21(11-12), 592-598. doi:10.1007/s00335-010-9297-z es_ES
dc.description.references Esteve-Codina, A., Kofler, R., Palmieri, N., Bussotti, G., Notredame, C., & Pérez-Enciso, M. (2011). Exploring the gonad transcriptome of two extreme male pigs with RNA-seq. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-552 es_ES
dc.description.references Chen, C., Ai, H., Ren, J., Li, W., Li, P., Qiao, R., … Huang, L. (2011). A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-448 es_ES
dc.description.references Jäger, M., Ott, C.-E., Grünhagen, J., Hecht, J., Schell, H., Mundlos, S., … Lienau, J. (2011). Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-158 es_ES
dc.description.references Li, R. W., Rinaldi, M., & Capuco, A. V. (2011). Characterization of the abomasal transcriptome for mechanisms of resistance to gastrointestinal nematodes in cattle. Veterinary Research, 42(1), 114. doi:10.1186/1297-9716-42-114 es_ES
dc.description.references Ramírez, R., & Cava, R. (2007). Carcass composition and meat quality of three different Iberian×Duroc genotype pigs. Meat Science, 75(3), 388-396. doi:10.1016/j.meatsci.2006.08.003 es_ES
dc.description.references Webb, E. C., & O’Neill, H. A. (2008). The animal fat paradox and meat quality. Meat Science, 80(1), 28-36. doi:10.1016/j.meatsci.2008.05.029 es_ES
dc.description.references Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9), 1105-1111. doi:10.1093/bioinformatics/btp120 es_ES
dc.description.references Zytnicki, M., & Quesneville, H. (2011). S-MART, A Software Toolbox to Aid RNA-seq Data Analysis. PLoS ONE, 6(10), e25988. doi:10.1371/journal.pone.0025988 es_ES
dc.description.references Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57-63. doi:10.1038/nrg2484 es_ES
dc.description.references Yu, Y., Ping, J., Chen, H., Jiao, L., Zheng, S., Han, Z.-G., … Huang, J. (2010). A comparative analysis of liver transcriptome suggests divergent liver function among human, mouse and rat. Genomics, 96(5), 281-289. doi:10.1016/j.ygeno.2010.08.003 es_ES
dc.description.references Ramsköld, D., Wang, E. T., Burge, C. B., & Sandberg, R. (2009). An Abundance of Ubiquitously Expressed Genes Revealed by Tissue Transcriptome Sequence Data. PLoS Computational Biology, 5(12), e1000598. doi:10.1371/journal.pcbi.1000598 es_ES
dc.description.references Stanke, M., Diekhans, M., Baertsch, R., & Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24(5), 637-644. doi:10.1093/bioinformatics/btn013 es_ES
dc.description.references Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106 es_ES
dc.description.references Kirischian, N., McArthur, A. G., Jesuthasan, C., Krattenmacher, B., & Wilson, J. Y. (2010). Phylogenetic and Functional Analysis of the Vertebrate Cytochrome P450 2 Family. Journal of Molecular Evolution, 72(1), 56-71. doi:10.1007/s00239-010-9402-7 es_ES
dc.description.references Ramayo-Caldas, Y., Castelló, A., Pena, R. N., Alves, E., Mercadé, A., Souza, C. A., … Folch, J. M. (2010). Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics, 11(1). doi:10.1186/1471-2164-11-593 es_ES
dc.description.references Wise, E. M., & Ball, E. G. (1964). MALIC ENZYME AND LIPOGENESIS. Proceedings of the National Academy of Sciences, 52(5), 1255-1263. doi:10.1073/pnas.52.5.1255 es_ES
dc.description.references Tugwood, J. D., Holden, P. R., James, N. H., Prince, R. A., & Roberts, R. A. (1998). A peroxisome proliferator-activated receptor-alpha (PPARα) cDNA cloned from guinea-pig liver encodes a protein with similar properties to the mouse PPARα: implications for species differences in responses to peroxisome proliferators. Archives of Toxicology, 72(3), 169-177. doi:10.1007/s002040050483 es_ES
dc.description.references Cheon, Y., Nara, T. Y., Band, M. R., Beever, J. E., Wallig, M. A., & Nakamura, M. T. (2005). Induction of overlapping genes by fasting and a peroxisome proliferator in pigs: evidence of functional PPARα in nonproliferating species. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(6), R1525-R1535. doi:10.1152/ajpregu.00751.2004 es_ES
dc.description.references Finck, B. N., Gropler, M. C., Chen, Z., Leone, T. C., Croce, M. A., Harris, T. E., … Kelly, D. P. (2006). Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metabolism, 4(3), 199-210. doi:10.1016/j.cmet.2006.08.005 es_ES
dc.description.references Carrapiso, A. I., Bonilla, F., & Garcı́a, C. (2003). Effect of crossbreeding and rearing system on sensory characteristics of Iberian ham. Meat Science, 65(1), 623-629. doi:10.1016/s0309-1740(02)00256-5 es_ES
dc.description.references Rudel, L. L., Parks, J. S., & Sawyer, J. K. (1995). Compared With Dietary Monounsaturated and Saturated Fat, Polyunsaturated Fat Protects African Green Monkeys From Coronary Artery Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 15(12), 2101-2110. doi:10.1161/01.atv.15.12.2101 es_ES
dc.description.references Poudyal, H., Panchal, S. K., Diwan, V., & Brown, L. (2011). Omega-3 fatty acids and metabolic syndrome: Effects and emerging mechanisms of action. Progress in Lipid Research, 50(4), 372-387. doi:10.1016/j.plipres.2011.06.003 es_ES
dc.description.references Stables, M. J., & Gilroy, D. W. (2011). Old and new generation lipid mediators in acute inflammation and resolution. Progress in Lipid Research, 50(1), 35-51. doi:10.1016/j.plipres.2010.07.005 es_ES
dc.description.references Clop, A., Ovilo, C., Perez-Enciso, M., Cercos, A., Tomas, A., Fernandez, A., … Noguera, J. L. (2003). Detection of QTL affecting fatty acid composition in the pig. Mammalian Genome, 14(9), 650-656. doi:10.1007/s00335-002-2210-7 es_ES
dc.description.references Zhang, Y., Klein, K., Sugathan, A., Nassery, N., Dombkowski, A., Zanger, U. M., & Waxman, D. J. (2011). Transcriptional Profiling of Human Liver Identifies Sex-Biased Genes Associated with Polygenic Dyslipidemia and Coronary Artery Disease. PLoS ONE, 6(8), e23506. doi:10.1371/journal.pone.0023506 es_ES
dc.description.references Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16), 9440-9445. doi:10.1073/pnas.1530509100 es_ES
dc.description.references Øvergård, A.-C., Nerland, A., & Patel, S. (2010). Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (Hippoglossus Hippoglossus L.); during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC Molecular Biology, 11(1), 36. doi:10.1186/1471-2199-11-36 es_ES
dc.description.references Calvano, S. E., Xiao, W., Richards, D. R., Felciano, R. M., Baker, H. V., … Lowry, S. F. (2005). A network-based analysis of systemic inflammation in humans. Nature, 437(7061), 1032-1037. doi:10.1038/nature03985 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem