- -

Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles

Mostrar el registro completo del ítem

Gimeno, B.; Sorolla, E.; Anza, S.; Vicente, C.; Gil, J.; Pérez, AM.; Boria Esbert, VE.... (2009). Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles. Physical review. E, Statistical, nonlinear, and soft matter physics. 79(4):1-9. https://doi.org/10.1103/PhysRevE.79.046604

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150460

Ficheros en el ítem

Metadatos del ítem

Título: Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles
Autor: Gimeno, B. Sorolla, E. Anza, S. Vicente, C. Gil, J. Pérez, A. M. Boria Esbert, Vicente Enrique Pérez, F. J. Quesada, F. Álvarez, A. Raboso, D.
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] A technique for the accurate computation of the electromagnetic fields radiated by a charged particle moving within a parallel-plate waveguide is presented. Based on a transformation of the time-varying current density ...[+]
Palabras clave: Current density , Electrodynamics , Electromagnetic fields , Finite difference time-domain analysis , Frequency-domain analysis , Green's function methods , Microwave switches , Waveguides
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical review. E, Statistical, nonlinear, and soft matter physics. (issn: 1539-3755 )
DOI: 10.1103/PhysRevE.79.046604
Editorial:
American Physical Society
Versión del editor: https://doi.org/10.1103/PhysRevE.79.046604
Código del Proyecto:
info:eu-repo/grantAgreement/ESA//19918%2F06%2FNL%2FGLC/EU/RF Breakdown in Multicarrier Systems/
Agradecimientos:
The authors would like to thank ESA/ESTEC for having funded this research activity through the Contract "RF Breakdown in Multicarrier Systems" (Contract No. 19918/06/NL/GLC).
Tipo: Artículo

References

Figueroa, H., Gai, W., Konecny, R., Norem, J., Ruggiero, A., Schoessow, P., & Simpson, J. (1988). Direct Measurement of Beam-Induced Fields in Accelerating Structures. Physical Review Letters, 60(21), 2144-2147. doi:10.1103/physrevlett.60.2144

Ng, K.-Y. (1990). Wake fields in a dielectric-lined waveguide. Physical Review D, 42(5), 1819-1828. doi:10.1103/physrevd.42.1819

Rosing, M., & Gai, W. (1990). Longitudinal- and transverse-wake-field effects in dielectric structures. Physical Review D, 42(5), 1829-1834. doi:10.1103/physrevd.42.1829 [+]
Figueroa, H., Gai, W., Konecny, R., Norem, J., Ruggiero, A., Schoessow, P., & Simpson, J. (1988). Direct Measurement of Beam-Induced Fields in Accelerating Structures. Physical Review Letters, 60(21), 2144-2147. doi:10.1103/physrevlett.60.2144

Ng, K.-Y. (1990). Wake fields in a dielectric-lined waveguide. Physical Review D, 42(5), 1819-1828. doi:10.1103/physrevd.42.1819

Rosing, M., & Gai, W. (1990). Longitudinal- and transverse-wake-field effects in dielectric structures. Physical Review D, 42(5), 1829-1834. doi:10.1103/physrevd.42.1829

Gai, W., Kanareykin, A. D., Kustov, A. L., & Simpson, J. (1997). Numerical simulations of intense charged-particle beam propagation in a dielectric wake-field accelerator. Physical Review E, 55(3), 3481-3488. doi:10.1103/physreve.55.3481

Burov, A., & Danilov, V. (1999). Suppression of Transverse Bunch Instabilities by Asymmetries in the Chamber Geometry. Physical Review Letters, 82(11), 2286-2289. doi:10.1103/physrevlett.82.2286

Xiao, L., Gai, W., & Sun, X. (2001). Field analysis of a dielectric-loaded rectangular waveguide accelerating structure. Physical Review E, 65(1). doi:10.1103/physreve.65.016505

Jing, C., Liu, W., Xiao, L., Gai, W., Schoessow, P., & Wong, T. (2003). Dipole-mode wakefields in dielectric-loaded rectangular waveguide accelerating structures. Physical Review E, 68(1). doi:10.1103/physreve.68.016502

Stupakov, G., Bane, K. L. F., & Zagorodnov, I. (2007). Optical approximation in the theory of geometric impedance. Physical Review Special Topics - Accelerators and Beams, 10(5). doi:10.1103/physrevstab.10.054401

Hatch, A. J., & Williams, H. B. (1954). The Secondary Electron Resonance Mechanism of Low‐Pressure High‐Frequency Gas Breakdown. Journal of Applied Physics, 25(4), 417-423. doi:10.1063/1.1721656

Hatch, A. J., & Williams, H. B. (1958). Multipacting Modes of High-Frequency Gaseous Breakdown. Physical Review, 112(3), 681-685. doi:10.1103/physrev.112.681

Vaughan, J. R. M. (1988). Multipactor. IEEE Transactions on Electron Devices, 35(7), 1172-1180. doi:10.1109/16.3387

Gilardini, A. L. (1995). Multipacting discharges: Constant‐ktheory and simulation results. Journal of Applied Physics, 78(2), 783-795. doi:10.1063/1.360336

Riyopoulos, S. (1997). Multipactor saturation due to space-charge-induced debunching. Physics of Plasmas, 4(5), 1448-1462. doi:10.1063/1.872319

Kryazhev, A., Buyanova, M., Semenov, V., Anderson, D., Lisak, M., Puech, J., … Sombrin, J. (2002). Hybrid resonant modes of two-sided multipactor and transition to the polyphase regime. Physics of Plasmas, 9(11), 4736-4743. doi:10.1063/1.1514969

Udiljak, R., Anderson, D., Ingvarson, P., Jordan, U., Jostell, U., Lapierre, L., … Sombrin, J. (2003). New method for detection of multipaction. IEEE Transactions on Plasma Science, 31(3), 396-404. doi:10.1109/tps.2003.811646

De Lara, J., Perez, F., Alfonseca, M., Galan, L., Montero, I., Roman, E., & Garcia-Baquero, D. R. (2006). Multipactor prediction for on-board spacecraft RF equipment with the MEST software tool. IEEE Transactions on Plasma Science, 34(2), 476-484. doi:10.1109/tps.2006.872450

Torregrosa, G., Coves, A., Vicente, C. P., Perez, A. M., Gimeno, B., & Boria, V. E. (2006). Time evolution of an electron discharge in a parallel-plate dielectric-loaded waveguide. IEEE Electron Device Letters, 27(7), 619-621. doi:10.1109/led.2006.877284

Udiljak, R., Anderson, D., Lisak, M., Semenov, V. E., & Puech, J. (2007). Multipactor in a coaxial transmission line. I. Analytical study. Physics of Plasmas, 14(3), 033508. doi:10.1063/1.2710464

Semenov, V. E., Zharova, N., Udiljak, R., Anderson, D., Lisak, M., & Puech, J. (2007). Multipactor in a coaxial transmission line. II. Particle-in-cell simulations. Physics of Plasmas, 14(3), 033509. doi:10.1063/1.2710466

Anza, S., Vicente, C., Gimeno, B., Boria, V. E., & Armendáriz, J. (2007). Long-term multipactor discharge in multicarrier systems. Physics of Plasmas, 14(8), 082112. doi:10.1063/1.2768019

Udiljak, R., Anderson, D., Lisak, M., Puech, J., & Semenov, V. E. (2007). Multipactor in a Waveguide Iris. IEEE Transactions on Plasma Science, 35(2), 388-395. doi:10.1109/tps.2007.892737

Burton, R. J., de Jong, M. S., & Funk, L. W. (1991). Vacuum and multipactor performance of the hadron electron ring accelerator 52 MHz cavities. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9(3), 2081-2084. doi:10.1116/1.577417

Yamaguchi, S., Saito, Y., Anami, S., & Michizono, S. (1992). Trajectory simulation of multipactoring electrons in an S-band pillbox RF window. IEEE Transactions on Nuclear Science, 39(2), 278-282. doi:10.1109/23.277497

Kishek, R., & Lau, Y. Y. (1995). Interaction of Multipactor Discharge and rf Circuit. Physical Review Letters, 75(6), 1218-1221. doi:10.1103/physrevlett.75.1218

Lay-Kee Ang, Lau, Y. Y., Kishek, R. A., & Gilgenbach, R. M. (1998). Power deposited on a dielectric by multipactor. IEEE Transactions on Plasma Science, 26(3), 290-295. doi:10.1109/27.700756

Kishek, R. A., Lau, Y. Y., Ang, L. K., Valfells, A., & Gilgenbach, R. M. (1998). Multipactor discharge on metals and dielectrics: Historical review and recent theories. Physics of Plasmas, 5(5), 2120-2126. doi:10.1063/1.872883

Neuber, A., Hemmert, D., Krompholz, H., Hatfield, L., & Kristiansen, M. (1999). Initiation of high power microwave dielectric interface breakdown. Journal of Applied Physics, 86(3), 1724-1728. doi:10.1063/1.370953

Chojnacki, E. (2000). Simulations of a multipactor-inhibited waveguide geometry. Physical Review Special Topics - Accelerators and Beams, 3(3). doi:10.1103/physrevstab.3.032001

Cimino, R., Collins, I. R., Furman, M. A., Pivi, M., Ruggiero, F., Rumolo, G., & Zimmermann, F. (2004). Can Low-Energy Electrons Affect High-Energy Physics Accelerators? Physical Review Letters, 93(1). doi:10.1103/physrevlett.93.014801

Abe, T., Kageyama, T., Akai, K., Ebihara, K., Sakai, H., & Takeuchi, Y. (2006). Multipactoring zone map of an rf input coupler and its application to high beam current storage rings. Physical Review Special Topics - Accelerators and Beams, 9(6). doi:10.1103/physrevstab.9.062002

Sorolla, E., Anza, S., Gimeno, B., Perez, A. M. P., Vicente, C., Gil, J., … Boria, V. E. (2008). An Analytical Model to Evaluate the Radiated Power Spectrum of a Multipactor Discharge in a Parallel-Plate Region. IEEE Transactions on Electron Devices, 55(8), 2252-2258. doi:10.1109/ted.2008.926271

Harrington, R. F. (2001). Time-Harmonic Electromagnetic Fields. doi:10.1109/9780470546710

Hanson, G. W., & Yakovlev, A. B. (2002). Operator Theory for Electromagnetics. doi:10.1007/978-1-4757-3679-3

Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 369(3), 253-287. doi:10.1002/andp.19213690304

Myun-Joo Park, & Sangwook Nam. (1998). Rapid summation of the Green’s function for the rectangular waveguide. IEEE Transactions on Microwave Theory and Techniques, 46(12), 2164-2166. doi:10.1109/22.739301

Capolino, F., Wilton, D. R., & Johnson, W. A. (2005). Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method. IEEE Transactions on Antennas and Propagation, 53(9), 2977-2984. doi:10.1109/tap.2005.854556

Kustepeli, A., & Martin, A. Q. (2000). On the splitting parameter in the Ewald method. IEEE Microwave and Guided Wave Letters, 10(5), 168-170. doi:10.1109/75.850366

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem