- -

Influence of substrate pore size distribution, poultice type, and application technique on the desalination of medium-porous stones

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of substrate pore size distribution, poultice type, and application technique on the desalination of medium-porous stones

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kroener, Stephan es_ES
dc.contributor.author Mañas Alcaide, Berta es_ES
dc.contributor.author Mas-Barberà, Xavier es_ES
dc.date.accessioned 2020-09-24T12:28:20Z
dc.date.available 2020-09-24T12:28:20Z
dc.date.issued 2016-03-29 es_ES
dc.identifier.issn 0039-3630 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150618
dc.description.abstract [EN] This paper studies the influence of poultice type and application techniques on the desalination efficiency of two limestone substrates having similar porosities (22-25%) but different pore size distributions: microporous Bateig Novelda and macro porous Tosca Rocafort stones. Three poultice types are compared: pure sepiolite (fine porous), sepiolite and aggregate (medium porous), and pure cellulose powder (coarse porous). Four application techniques are studied: (i) direct application on the stone, (ii) pre-wetting before poultice application, (iii) Japanese paper before application, and (iv) pre-wetting + Japanese paper before application. Samples were taken from poultices on the one hand, and from substrates at different depths on the other hand. Their content in soluble salts was estimated by ionic conductivity measurements. After three application runs, the best result for both substrates is achieved with the combined application of coarse-and fine-porous poultices (FPs) (desalination depth: 4.5/6 cm for macro/micro-porous substrates). The FP is also able to extract salts properly, but the desalination depth achieved is less important (3 cm). A direct poultice application without pre-wetting nor Japanese paper is to be preferred for both stone types. es_ES
dc.description.sponsorship This research was supported financially by the National Spanish 'I + D+I MEC' Project HAR2011-29538. The authors thank the Tosca Rocafort and Bateig Novelda quarries for the stone supply and Materiales Primas Abrasivas for the Soft glass G3 granulometry information. Thanks are also due to Ann Bourges and Veronique Verges-Belmin for the information about the mercury intrusion porosimetry parameters used for the cellulosic powder poultice es_ES
dc.language Inglés es_ES
dc.publisher Maney Publishing es_ES
dc.relation.ispartof Studies in Conservation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Desalination es_ES
dc.subject Poulticing es_ES
dc.subject Sepiolite es_ES
dc.subject Cellulosic powder es_ES
dc.subject Pre-wetting es_ES
dc.subject Japanese paper es_ES
dc.subject Pore size distribution es_ES
dc.subject Ionic conductivity es_ES
dc.subject.classification PINTURA es_ES
dc.title Influence of substrate pore size distribution, poultice type, and application technique on the desalination of medium-porous stones es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00393630.2015.1131942 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//HAR2011-29538/ES/LA PREVENCION EN ESCULTURA Y ORNAMENTOS EN PATRIMONIO CULTURAL. APLICACION DEL SISTEMA BICAPA EN EL PROCESO DE MOLDEADO Y PREPARACION DE MORTEROS ORGANICOS EN LA REPRODUCCION/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Kroener, S.; Mañas Alcaide, B.; Mas-Barberà, X. (2016). Influence of substrate pore size distribution, poultice type, and application technique on the desalination of medium-porous stones. Studies in Conservation. 61(5):286-296. https://doi.org/10.1080/00393630.2015.1131942 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00393630.2015.1131942 es_ES
dc.description.upvformatpinicio 286 es_ES
dc.description.upvformatpfin 296 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\325271 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bläuer Böhm, C., Zehnder, K., Domeisen, H., & Arnold, A. (2001). Climate control for the passive conservation of the romanesque painted wooden ceiling in the church of Zillis (Switzerland). Studies in Conservation, 46(4), 251-268. doi:10.1179/sic.2001.46.4.251 es_ES
dc.description.references Bourguignon, E. 2009. Dessalement de matériauxporeuxmodèlespar la méthode des compresses. PhD Thesis, Ecole Nationele des Ponts et Chaussées. p. 66. es_ES
dc.description.references Carretero, M. I., Bernabé, J. M., & Galán, E. (2006). Application of sepiolite–cellulose pastes for the removal of salts from building stones. Applied Clay Science, 33(1), 43-51. doi:10.1016/j.clay.2006.01.007 es_ES
dc.description.references Charola, A. E. (2000). Salts in the Deterioration of Porous Materials: An Overview. Journal of the American Institute for Conservation, 39(3), 327. doi:10.2307/3179977 es_ES
dc.description.references Lubelli, B., & van Hees, R. P. J. (2007). Effectiveness of crystallization inhibitors in preventing salt damage in building materials. Journal of Cultural Heritage, 8(3), 223-234. doi:10.1016/j.culher.2007.06.001 es_ES
dc.description.references Lubelli, B., & van Hees, R. P. J. (2010). Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties. Journal of Cultural Heritage, 11(1), 10-18. doi:10.1016/j.culher.2009.03.005 es_ES
dc.description.references Pel, L., Sawdy, A., & Voronina, V. (2010). Physical principles and efficiency of salt extraction by poulticing. Journal of Cultural Heritage, 11(1), 59-67. doi:10.1016/j.culher.2009.03.007 es_ES
dc.description.references Price, C. 2000. An Expert Chemical Model for Determining the Environmental Conditions Needed to Prevent Salt Damage to Porous Materials. European Commission, Project ENV4-CT95-0135 (1995–2000), Research Report Number 11. es_ES
dc.description.references Siegesmund, S., & Snethlage, R. (Eds.). (2011). Stone in Architecture. doi:10.1007/978-3-642-14475-2 es_ES
dc.description.references Verges-Belmin, V., & Siedel, H. (2005). Desalination of Masonries and Monumental Sculptures by Poulticing: A Review / Entsalzen von Mauerwerk und Steinfiguren mit Hilfe von Kompressen: Ein Überblick. Restoration of Buildings and Monuments, 11(6), 391-408. doi:10.1515/rbm-2005-6000 es_ES
dc.description.references Vergès-Belmin, V., Heritage, A., & Bourgès, A. (2011). Powdered Cellulose Poultices in Stone and Wall Painting Conservation - Myths and Realities. Studies in Conservation, 56(4), 281-297. doi:10.1179/204705811x13159282692923 es_ES
dc.description.references Voronina, V. 2011. Salt Extraction by Poulticing: An NMR Study. PhD Thesis, Eindhoven University of Technology. es_ES
dc.description.references Voronina, V., Pel, L., Sawdy, A., & Kopinga, K. (2012). The influence of osmotic pressure on poulticing treatments for cultural heritage objects. Materials and Structures, 46(1-2), 221-231. doi:10.1617/s11527-012-9896-0 es_ES
dc.description.references Voronina, V., Pel, L., & Kopinga, K. (2014). Effect of osmotic pressure on salt extraction by a poultice. Construction and Building Materials, 53, 432-438. doi:10.1016/j.conbuildmat.2013.10.071 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem