Mostrar el registro sencillo del ítem
dc.contributor.author | Kroener, Stephan | es_ES |
dc.contributor.author | Mañas Alcaide, Berta | es_ES |
dc.contributor.author | Mas-Barberà, Xavier | es_ES |
dc.date.accessioned | 2020-09-24T12:28:20Z | |
dc.date.available | 2020-09-24T12:28:20Z | |
dc.date.issued | 2016-03-29 | es_ES |
dc.identifier.issn | 0039-3630 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150618 | |
dc.description.abstract | [EN] This paper studies the influence of poultice type and application techniques on the desalination efficiency of two limestone substrates having similar porosities (22-25%) but different pore size distributions: microporous Bateig Novelda and macro porous Tosca Rocafort stones. Three poultice types are compared: pure sepiolite (fine porous), sepiolite and aggregate (medium porous), and pure cellulose powder (coarse porous). Four application techniques are studied: (i) direct application on the stone, (ii) pre-wetting before poultice application, (iii) Japanese paper before application, and (iv) pre-wetting + Japanese paper before application. Samples were taken from poultices on the one hand, and from substrates at different depths on the other hand. Their content in soluble salts was estimated by ionic conductivity measurements. After three application runs, the best result for both substrates is achieved with the combined application of coarse-and fine-porous poultices (FPs) (desalination depth: 4.5/6 cm for macro/micro-porous substrates). The FP is also able to extract salts properly, but the desalination depth achieved is less important (3 cm). A direct poultice application without pre-wetting nor Japanese paper is to be preferred for both stone types. | es_ES |
dc.description.sponsorship | This research was supported financially by the National Spanish 'I + D+I MEC' Project HAR2011-29538. The authors thank the Tosca Rocafort and Bateig Novelda quarries for the stone supply and Materiales Primas Abrasivas for the Soft glass G3 granulometry information. Thanks are also due to Ann Bourges and Veronique Verges-Belmin for the information about the mercury intrusion porosimetry parameters used for the cellulosic powder poultice | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Maney Publishing | es_ES |
dc.relation.ispartof | Studies in Conservation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Desalination | es_ES |
dc.subject | Poulticing | es_ES |
dc.subject | Sepiolite | es_ES |
dc.subject | Cellulosic powder | es_ES |
dc.subject | Pre-wetting | es_ES |
dc.subject | Japanese paper | es_ES |
dc.subject | Pore size distribution | es_ES |
dc.subject | Ionic conductivity | es_ES |
dc.subject.classification | PINTURA | es_ES |
dc.title | Influence of substrate pore size distribution, poultice type, and application technique on the desalination of medium-porous stones | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00393630.2015.1131942 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//HAR2011-29538/ES/LA PREVENCION EN ESCULTURA Y ORNAMENTOS EN PATRIMONIO CULTURAL. APLICACION DEL SISTEMA BICAPA EN EL PROCESO DE MOLDEADO Y PREPARACION DE MORTEROS ORGANICOS EN LA REPRODUCCION/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals | es_ES |
dc.description.bibliographicCitation | Kroener, S.; Mañas Alcaide, B.; Mas-Barberà, X. (2016). Influence of substrate pore size distribution, poultice type, and application technique on the desalination of medium-porous stones. Studies in Conservation. 61(5):286-296. https://doi.org/10.1080/00393630.2015.1131942 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00393630.2015.1131942 | es_ES |
dc.description.upvformatpinicio | 286 | es_ES |
dc.description.upvformatpfin | 296 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 61 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\325271 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Bläuer Böhm, C., Zehnder, K., Domeisen, H., & Arnold, A. (2001). Climate control for the passive conservation of the romanesque painted wooden ceiling in the church of Zillis (Switzerland). Studies in Conservation, 46(4), 251-268. doi:10.1179/sic.2001.46.4.251 | es_ES |
dc.description.references | Bourguignon, E. 2009. Dessalement de matériauxporeuxmodèlespar la méthode des compresses. PhD Thesis, Ecole Nationele des Ponts et Chaussées. p. 66. | es_ES |
dc.description.references | Carretero, M. I., Bernabé, J. M., & Galán, E. (2006). Application of sepiolite–cellulose pastes for the removal of salts from building stones. Applied Clay Science, 33(1), 43-51. doi:10.1016/j.clay.2006.01.007 | es_ES |
dc.description.references | Charola, A. E. (2000). Salts in the Deterioration of Porous Materials: An Overview. Journal of the American Institute for Conservation, 39(3), 327. doi:10.2307/3179977 | es_ES |
dc.description.references | Lubelli, B., & van Hees, R. P. J. (2007). Effectiveness of crystallization inhibitors in preventing salt damage in building materials. Journal of Cultural Heritage, 8(3), 223-234. doi:10.1016/j.culher.2007.06.001 | es_ES |
dc.description.references | Lubelli, B., & van Hees, R. P. J. (2010). Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties. Journal of Cultural Heritage, 11(1), 10-18. doi:10.1016/j.culher.2009.03.005 | es_ES |
dc.description.references | Pel, L., Sawdy, A., & Voronina, V. (2010). Physical principles and efficiency of salt extraction by poulticing. Journal of Cultural Heritage, 11(1), 59-67. doi:10.1016/j.culher.2009.03.007 | es_ES |
dc.description.references | Price, C. 2000. An Expert Chemical Model for Determining the Environmental Conditions Needed to Prevent Salt Damage to Porous Materials. European Commission, Project ENV4-CT95-0135 (1995–2000), Research Report Number 11. | es_ES |
dc.description.references | Siegesmund, S., & Snethlage, R. (Eds.). (2011). Stone in Architecture. doi:10.1007/978-3-642-14475-2 | es_ES |
dc.description.references | Verges-Belmin, V., & Siedel, H. (2005). Desalination of Masonries and Monumental Sculptures by Poulticing: A Review / Entsalzen von Mauerwerk und Steinfiguren mit Hilfe von Kompressen: Ein Überblick. Restoration of Buildings and Monuments, 11(6), 391-408. doi:10.1515/rbm-2005-6000 | es_ES |
dc.description.references | Vergès-Belmin, V., Heritage, A., & Bourgès, A. (2011). Powdered Cellulose Poultices in Stone and Wall Painting Conservation - Myths and Realities. Studies in Conservation, 56(4), 281-297. doi:10.1179/204705811x13159282692923 | es_ES |
dc.description.references | Voronina, V. 2011. Salt Extraction by Poulticing: An NMR Study. PhD Thesis, Eindhoven University of Technology. | es_ES |
dc.description.references | Voronina, V., Pel, L., Sawdy, A., & Kopinga, K. (2012). The influence of osmotic pressure on poulticing treatments for cultural heritage objects. Materials and Structures, 46(1-2), 221-231. doi:10.1617/s11527-012-9896-0 | es_ES |
dc.description.references | Voronina, V., Pel, L., & Kopinga, K. (2014). Effect of osmotic pressure on salt extraction by a poultice. Construction and Building Materials, 53, 432-438. doi:10.1016/j.conbuildmat.2013.10.071 | es_ES |