Mostrar el registro sencillo del ítem
dc.contributor.author | Ferrando, J. C. | es_ES |
dc.contributor.author | Kakol, J. | es_ES |
dc.contributor.author | López Pellicer, Manuel | es_ES |
dc.date.accessioned | 2020-09-24T12:28:49Z | |
dc.date.available | 2020-09-24T12:28:49Z | |
dc.date.issued | 2016-08-01 | es_ES |
dc.identifier.issn | 0166-8641 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150634 | |
dc.description.abstract | [EN] The concept of Sigma-base of neighborhoods of the identity of a topological group G is introduced. If the index set Sigma subset of N-N is unbounded and directed (and if additionally each subset of Sigma which is bounded in N-N has a bound at Sigma) a base {U-alpha : alpha is an element of Sigma} of neighborhoods of the identity of a topological group G with U-beta subset of U-alpha whenever alpha <= beta with alpha, beta is an element of Sigma is called a Sigma-base (a Sigma(2)-base). The case when Sigma = N-N has been noticed for topological vector spaces (under the name of G-base) at [2]. If X is a separable and metrizable space which is not Polish, the space C-c(X) has a Sigma-base but does not admit any G-base. A topological group which is Frechet-Urysohn is metrizable iff it has a Sigma(2)-base of the identity. Under an appropriate ZFC model the space C-c (omega(1)) has a Sigma(2)-base which is not a G-base. We also prove that (i) every compact set in a topological group with a Sigma(2)-base of neighborhoods of the identity is metrizable, (ii) a C-p (X) space has a Sigma(2)-base iff X is countable, and (iii) if a space C-c(X) has a Sigma(2)-base then X is a C-Suslin space, hence C-c(X)is angelic. (C) 2016 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | Supported by Grant PROMETEO/2013/058 of the Conselleria de Education, Investigacion, Cultura y Deportes of Generalitat Valenciana. The second author also supported by the GACR Project 16-34860L and RVO: 67985840 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Topology and its Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | G-base | es_ES |
dc.subject | C-Suslin space | es_ES |
dc.subject | Web-compact space | es_ES |
dc.subject | Strict angelicity | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Spaces C(X)with ordered bases | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.topol.2016.05.006 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//16-34860L/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//67985840/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F058/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ferrando, JC.; Kakol, J.; López Pellicer, M. (2016). Spaces C(X)with ordered bases. Topology and its Applications. 208:30-39. https://doi.org/10.1016/j.topol.2016.05.006 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.topol.2016.05.006 | es_ES |
dc.description.upvformatpinicio | 30 | es_ES |
dc.description.upvformatpfin | 39 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 208 | es_ES |
dc.relation.pasarela | S\312496 | es_ES |
dc.contributor.funder | Czech Science Foundation | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |