- -

Spaces C(X)with ordered bases

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spaces C(X)with ordered bases

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferrando, J. C. es_ES
dc.contributor.author Kakol, J. es_ES
dc.contributor.author López Pellicer, Manuel es_ES
dc.date.accessioned 2020-09-24T12:28:49Z
dc.date.available 2020-09-24T12:28:49Z
dc.date.issued 2016-08-01 es_ES
dc.identifier.issn 0166-8641 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150634
dc.description.abstract [EN] The concept of Sigma-base of neighborhoods of the identity of a topological group G is introduced. If the index set Sigma subset of N-N is unbounded and directed (and if additionally each subset of Sigma which is bounded in N-N has a bound at Sigma) a base {U-alpha : alpha is an element of Sigma} of neighborhoods of the identity of a topological group G with U-beta subset of U-alpha whenever alpha <= beta with alpha, beta is an element of Sigma is called a Sigma-base (a Sigma(2)-base). The case when Sigma = N-N has been noticed for topological vector spaces (under the name of G-base) at [2]. If X is a separable and metrizable space which is not Polish, the space C-c(X) has a Sigma-base but does not admit any G-base. A topological group which is Frechet-Urysohn is metrizable iff it has a Sigma(2)-base of the identity. Under an appropriate ZFC model the space C-c (omega(1)) has a Sigma(2)-base which is not a G-base. We also prove that (i) every compact set in a topological group with a Sigma(2)-base of neighborhoods of the identity is metrizable, (ii) a C-p (X) space has a Sigma(2)-base iff X is countable, and (iii) if a space C-c(X) has a Sigma(2)-base then X is a C-Suslin space, hence C-c(X)is angelic. (C) 2016 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship Supported by Grant PROMETEO/2013/058 of the Conselleria de Education, Investigacion, Cultura y Deportes of Generalitat Valenciana. The second author also supported by the GACR Project 16-34860L and RVO: 67985840 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Topology and its Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject G-base es_ES
dc.subject C-Suslin space es_ES
dc.subject Web-compact space es_ES
dc.subject Strict angelicity es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Spaces C(X)with ordered bases es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.topol.2016.05.006 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//16-34860L/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//67985840/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F058/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ferrando, JC.; Kakol, J.; López Pellicer, M. (2016). Spaces C(X)with ordered bases. Topology and its Applications. 208:30-39. https://doi.org/10.1016/j.topol.2016.05.006 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.topol.2016.05.006 es_ES
dc.description.upvformatpinicio 30 es_ES
dc.description.upvformatpfin 39 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 208 es_ES
dc.relation.pasarela S\312496 es_ES
dc.contributor.funder Czech Science Foundation es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem