Mostrar el registro sencillo del ítem
dc.contributor.author | Vanacloig-Pedrós, Elena | es_ES |
dc.contributor.author | Proft, Markus Hans | es_ES |
dc.contributor.author | Pascual-Ahuir Giner, María Desamparados | es_ES |
dc.date.accessioned | 2020-09-24T12:28:51Z | |
dc.date.available | 2020-09-24T12:28:51Z | |
dc.date.issued | 2016-09-22 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150635 | |
dc.description.abstract | [EN] Citrinin (CIT) and ochratoxin A (OTA) are important mycotoxins, which frequently co-contaminate foodstuff. In order to assess the toxicologic threat posed by the two mycotoxins separately or in combination, their biological effects were studied here using genomic transcription profiling and specific live cell gene expression reporters in yeast cells. Both CIT and OTA cause highly transient transcriptional activation of different stress genes, which is greatly enhanced by the disruption of the multidrug exporter Pdr5. Therefore, we performed genome-wide transcription profiling experiments with the pdr5 mutant in response to acute CIT, OTA, or combined CIT/OTA exposure. We found that CIT and OTA activate divergent and largely nonoverlapping gene sets in yeast. CIT mainly caused the rapid induction of antioxidant and drug extrusion-related gene functions, while OTA mainly deregulated developmental genes related with yeast sporulation and sexual reproduction, having only a minor effect on the antioxidant response. The simultaneous exposure to CIT and OTA gave rise to a genomic response, which combined the specific features of the separated mycotoxin treatments. The application of stress-specific mutants and reporter gene fusions further confirmed that both mycotoxins have divergent biological effects in cells. Our results indicate that CIT exposure causes a strong oxidative stress, which triggers a massive transcriptional antioxidant and drug extrusion response, while OTA mainly deregulates developmental genes and only marginally induces the antioxidant defense. | es_ES |
dc.description.sponsorship | We thank Lorena Latorre and Javier Forment for their help with the microarray experiments and data analysis. This work was funded only in the initial phase by a grant from Ministerio de Economía y Competitividad (BFU2011-23326). We thank the Fond for Open Access Publication from Consejo Superior de Investigaciones Científicas (CSIC) for supporting publication costs of this article. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Toxins | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Ochratoxin A | es_ES |
dc.subject | Citrinin | es_ES |
dc.subject | Transcriptome | es_ES |
dc.subject | Saccharomyces cerevisiae | es_ES |
dc.subject | Mycotoxins | es_ES |
dc.subject | Oxidative stress | es_ES |
dc.subject | Dose response | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/toxins8100273 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Vanacloig-Pedrós, E.; Proft, MH.; Pascual-Ahuir Giner, MD. (2016). Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast. Toxins. 8(10):1-20. https://doi.org/10.3390/toxins8100273 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/toxins8100273 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2072-6651 | es_ES |
dc.identifier.pmid | 27669300 | es_ES |
dc.identifier.pmcid | PMC5086634 | es_ES |
dc.relation.pasarela | S\337379 | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.description.references | Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516. doi:10.1128/cmr.16.3.497-516.2003 | es_ES |
dc.description.references | Marroquín-Cardona, A. G., Johnson, N. M., Phillips, T. D., & Hayes, A. W. (2014). Mycotoxins in a changing global environment – A review. Food and Chemical Toxicology, 69, 220-230. doi:10.1016/j.fct.2014.04.025 | es_ES |
dc.description.references | Moretti, A., Susca, A., Mulé, G., Logrieco, A. F., & Proctor, R. H. (2013). Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International Journal of Food Microbiology, 167(1), 57-66. doi:10.1016/j.ijfoodmicro.2013.06.033 | es_ES |
dc.description.references | Wu, F., Groopman, J. D., & Pestka, J. J. (2014). Public Health Impacts of Foodborne Mycotoxins. Annual Review of Food Science and Technology, 5(1), 351-372. doi:10.1146/annurev-food-030713-092431 | es_ES |
dc.description.references | Möbius, N., & Hertweck, C. (2009). Fungal phytotoxins as mediators of virulence. Current Opinion in Plant Biology, 12(4), 390-398. doi:10.1016/j.pbi.2009.06.004 | es_ES |
dc.description.references | Doi, K., & Uetsuka, K. (2014). Mechanisms of Mycotoxin-induced Dermal Toxicity and Tumorigenesis Through Oxidative Stress-related Pathways. Journal of Toxicologic Pathology, 27(1), 1-10. doi:10.1293/tox.2013-0062 | es_ES |
dc.description.references | Escrivá, L., Font, G., & Manyes, L. (2015). In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology, 78, 185-206. doi:10.1016/j.fct.2015.02.005 | es_ES |
dc.description.references | Vettorazzi, A., González-Peñas, E., & de Cerain, A. L. (2014). Ochratoxin A kinetics: A review of analytical methods and studies in rat model. Food and Chemical Toxicology, 72, 273-288. doi:10.1016/j.fct.2014.07.020 | es_ES |
dc.description.references | Wang, Y., Wang, L., Liu, F., Wang, Q., Selvaraj, J., Xing, F., … Liu, Y. (2016). Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins, 8(3), 83. doi:10.3390/toxins8030083 | es_ES |
dc.description.references | Kőszegi, T., & Poór, M. (2016). Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins, 8(4), 111. doi:10.3390/toxins8040111 | es_ES |
dc.description.references | Faucet, V., Pfohl-Leszkowicz, A., Dai, J., Castegnaro, M., & Manderville, R. A. (2004). Evidence for Covalent DNA Adduction by Ochratoxin A following Chronic Exposure to Rat and Subacute Exposure to Pig. Chemical Research in Toxicology, 17(9), 1289-1296. doi:10.1021/tx049877s | es_ES |
dc.description.references | Mantle, P. G., Faucet-Marquis, V., Manderville, R. A., Squillaci, B., & Pfohl-Leszkowicz, A. (2010). Structures of Covalent Adducts between DNA and Ochratoxin A: A New Factor in Debate about Genotoxicity and Human Risk Assessment. Chemical Research in Toxicology, 23(1), 89-98. doi:10.1021/tx900295a | es_ES |
dc.description.references | Pfohl-Leszkowicz, A., & Manderville, R. A. (2011). An Update on Direct Genotoxicity as a Molecular Mechanism of Ochratoxin A Carcinogenicity. Chemical Research in Toxicology, 25(2), 252-262. doi:10.1021/tx200430f | es_ES |
dc.description.references | Rahimtula, A. D., Béréziat, J.-C., Bussacchini-Griot, V., & Bartsch, H. (1988). Lipid peroxidation as a possible cause of ochratoxin a toxicity. Biochemical Pharmacology, 37(23), 4469-4477. doi:10.1016/0006-2952(88)90662-4 | es_ES |
dc.description.references | Sorrenti, V., Di Giacomo, C., Acquaviva, R., Barbagallo, I., Bognanno, M., & Galvano, F. (2013). Toxicity of Ochratoxin A and Its Modulation by Antioxidants: A Review. Toxins, 5(10), 1742-1766. doi:10.3390/toxins5101742 | es_ES |
dc.description.references | BRAGULAT, M., MARTINEZ, E., CASTELLA, G., & CABANES, F. (2008). Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. International Journal of Food Microbiology, 126(1-2), 43-48. doi:10.1016/j.ijfoodmicro.2008.04.034 | es_ES |
dc.description.references | Vrabcheva, T., Usleber, E., Dietrich, R., & Märtlbauer, E. (2000). Co-occurrence of Ochratoxin A and Citrinin in Cereals from Bulgarian Villages with a History of Balkan Endemic Nephropathy. Journal of Agricultural and Food Chemistry, 48(6), 2483-2488. doi:10.1021/jf990891y | es_ES |
dc.description.references | Ostry, V., Malir, F., & Ruprich, J. (2013). Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins, 5(9), 1574-1586. doi:10.3390/toxins5091574 | es_ES |
dc.description.references | Schmidt-Heydt, M., Graf, E., Stoll, D., & Geisen, R. (2012). The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods. Food Microbiology, 29(2), 233-241. doi:10.1016/j.fm.2011.08.003 | es_ES |
dc.description.references | Schmidt-Heydt, M., Stoll, D., Schütz, P., & Geisen, R. (2015). Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. International Journal of Food Microbiology, 192, 1-6. doi:10.1016/j.ijfoodmicro.2014.09.008 | es_ES |
dc.description.references | Stoll, D., Schmidt-Heydt, M., & Geisen, R. (2013). Differences in the Regulation of Ochratoxin A by the HOG Pathway in Penicillium and Aspergillus in Response to High Osmolar Environments. Toxins, 5(7), 1282-1298. doi:10.3390/toxins5071282 | es_ES |
dc.description.references | Flajs, D., & Peraica, M. (2009). Toxicological Properties of Citrinin. Archives of Industrial Hygiene and Toxicology, 60(4), 457-464. doi:10.2478/10004-1254-60-2009-1992 | es_ES |
dc.description.references | Bouslimi, A., Ouannes, Z., Golli, E. E., Bouaziz, C., Hassen, W., & Bacha, H. (2008). Cytotoxicity and Oxidative Damage in Kidney Cells Exposed to the Mycotoxins Ochratoxin A and Citrinin: Individual and Combined Effects. Toxicology Mechanisms and Methods, 18(4), 341-349. doi:10.1080/15376510701556682 | es_ES |
dc.description.references | Chan, W.-H. (2007). Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochemical Journal, 404(2), 317-326. doi:10.1042/bj20061875 | es_ES |
dc.description.references | Kumar, M., Dwivedi, P., Sharma, A. K., Sankar, M., Patil, R. D., & Singh, N. D. (2012). Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicology and Industrial Health, 30(1), 90-98. doi:10.1177/0748233712452598 | es_ES |
dc.description.references | Kumar, R., Dwivedi, P. D., Dhawan, A., Das, M., & Ansari, K. M. (2011). Citrinin-Generated Reactive Oxygen Species Cause Cell Cycle Arrest Leading to Apoptosis via the Intrinsic Mitochondrial Pathway in Mouse Skin. Toxicological Sciences, 122(2), 557-566. doi:10.1093/toxsci/kfr143 | es_ES |
dc.description.references | Máté, G., Gazdag, Z., Mike, N., Papp, G., Pócsi, I., & Pesti, M. (2014). Regulation of oxidative stress-induced cytotoxic processes of citrinin in the fission yeast Schizosaccharomyces pombe. Toxicon, 90, 155-166. doi:10.1016/j.toxicon.2014.08.005 | es_ES |
dc.description.references | Pascual-Ahuir, A., Vanacloig-Pedros, E., & Proft, M. (2014). Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model. Nutrients, 6(5), 2077-2087. doi:10.3390/nu6052077 | es_ES |
dc.description.references | Ribeiro, S. M. R., Chagas, G. M., Campello, A. P., & Kluppel, M. L. W. (1997). Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochemistry and Function, 15(3), 203-209. doi:10.1002/(sici)1099-0844(199709)15:3<203::aid-cbf742>3.0.co;2-j | es_ES |
dc.description.references | Singh, N. D., Sharma, A. K., Dwivedi, P., Leishangthem, G. D., Rahman, S., Reddy, J., & Kumar, M. (2013). Effect of feeding graded doses of citrinin on apoptosis and oxidative stress in male Wistar rats through the F1generation. Toxicology and Industrial Health, 32(3), 385-397. doi:10.1177/0748233713500836 | es_ES |
dc.description.references | Yu, F.-Y., Liao, Y.-C., Chang, C.-H., & Liu, B.-H. (2006). Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicology Letters, 161(2), 143-151. doi:10.1016/j.toxlet.2005.08.009 | es_ES |
dc.description.references | Föllmann, W., Behm, C., & Degen, G. H. (2014). Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Archives of Toxicology, 88(5), 1097-1107. doi:10.1007/s00204-014-1216-8 | es_ES |
dc.description.references | Klarić, M., Rašić, D., & Peraica, M. (2013). Deleterious Effects of Mycotoxin Combinations Involving Ochratoxin A. Toxins, 5(11), 1965-1987. doi:10.3390/toxins5111965 | es_ES |
dc.description.references | Afshari, C. A., Hamadeh, H. K., & Bushel, P. R. (2010). The Evolution of Bioinformatics in Toxicology: Advancing Toxicogenomics. Toxicological Sciences, 120(Supplement 1), S225-S237. doi:10.1093/toxsci/kfq373 | es_ES |
dc.description.references | Yasokawa, D., & Iwahashi, H. (2010). Toxicogenomics using yeast DNA microarrays. Journal of Bioscience and Bioengineering, 110(5), 511-522. doi:10.1016/j.jbiosc.2010.06.003 | es_ES |
dc.description.references | Arbillaga, L., Azqueta, A., van Delft, J. H. M., & López de Cerain, A. (2007). In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicology and Applied Pharmacology, 220(2), 216-224. doi:10.1016/j.taap.2007.01.008 | es_ES |
dc.description.references | Hibi, D., Kijima, A., Kuroda, K., Suzuki, Y., Ishii, Y., Jin, M., … Umemura, T. (2013). Molecular mechanisms underlying ochratoxin A-induced genotoxicity: global gene expression analysis suggests induction of DNA double-strand breaks and cell cycle progression. The Journal of Toxicological Sciences, 38(1), 57-69. doi:10.2131/jts.38.57 | es_ES |
dc.description.references | Marin-Kuan, M., Nestler, S., Verguet, C., Bezençon, C., Piguet, D., Mansourian, R., … Schilter, B. (2005). A Toxicogenomics Approach to Identify New Plausible Epigenetic Mechanisms of Ochratoxin A Carcinogenicity in Rat. Toxicological Sciences, 89(1), 120-134. doi:10.1093/toxsci/kfj017 | es_ES |
dc.description.references | Vettorazzi, A., van Delft, J., & López de Cerain, A. (2013). A review on ochratoxin A transcriptomic studies. Food and Chemical Toxicology, 59, 766-783. doi:10.1016/j.fct.2013.05.043 | es_ES |
dc.description.references | Iwahashi, H., Kitagawa, E., Suzuki, Y., Ueda, Y., Ishizawa, Y., Nobumasa, H., … Iwahashi, Y. (2007). Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics, 8(1), 95. doi:10.1186/1471-2164-8-95 | es_ES |
dc.description.references | Toone, W. M., Morgan, B. A., & Jones, N. (2001). Redox control of AP-1-like factors in yeast and beyond. Oncogene, 20(19), 2336-2346. doi:10.1038/sj.onc.1204384 | es_ES |
dc.description.references | Luo, Y., Wang, J., Liu, B., Wang, Z., Yuan, Y., & Yue, T. (2015). Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption. PLOS ONE, 10(8), e0136045. doi:10.1371/journal.pone.0136045 | es_ES |
dc.description.references | Piotrowska, M., & Masek, A. (2015). Saccharomyces Cerevisiae Cell Wall Components as Tools for Ochratoxin A Decontamination. Toxins, 7(4), 1151-1162. doi:10.3390/toxins7041151 | es_ES |
dc.description.references | Jungwirth, H., & Kuchler, K. (2005). Yeast ABC transporters - A tale of sex, stress, drugs and aging. FEBS Letters, 580(4), 1131-1138. doi:10.1016/j.febslet.2005.12.050 | es_ES |
dc.description.references | Prasad, R., & Goffeau, A. (2012). Yeast ATP-Binding Cassette Transporters Conferring Multidrug Resistance. Annual Review of Microbiology, 66(1), 39-63. doi:10.1146/annurev-micro-092611-150111 | es_ES |
dc.description.references | Thakur, J. K., Arthanari, H., Yang, F., Pan, S.-J., Fan, X., Breger, J., … Näär, A. M. (2008). A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature, 452(7187), 604-609. doi:10.1038/nature06836 | es_ES |
dc.description.references | Chen, C.-C., & Chan, W.-H. (2009). Inhibition of Citrinin-Induced Apoptotic Biochemical Signaling in Human Hepatoma G2 Cells by Resveratrol. International Journal of Molecular Sciences, 10(8), 3338-3357. doi:10.3390/ijms10083338 | es_ES |
dc.description.references | Gayathri, L., Dhivya, R., Dhanasekaran, D., Periasamy, V. S., Alshatwi, A. A., & Akbarsha, M. A. (2015). Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food and Chemical Toxicology, 83, 151-163. doi:10.1016/j.fct.2015.06.009 | es_ES |
dc.description.references | ALEO, M. (1991). The role of altered mitochondrial function in citrinin-induced toxicity to rat renal proximal tubule suspensions*1. Toxicology and Applied Pharmacology, 109(3), 455-463. doi:10.1016/0041-008x(91)90008-3 | es_ES |
dc.description.references | Qi, X., Yu, T., Zhu, L., Gao, J., He, X., Huang, K., … Xu, W. (2014). Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses. Toxicology and Applied Pharmacology, 280(3), 543-549. doi:10.1016/j.taap.2014.08.030 | es_ES |
dc.description.references | Taniai, E., Yafune, A., Nakajima, M., Hayashi, S.-M., Nakane, F., Itahashi, M., & Shibutani, M. (2014). Ochratoxin A induces karyomegaly and cell cycle aberrations in renal tubular cells without relation to induction of oxidative stress responses in rats. Toxicology Letters, 224(1), 64-72. doi:10.1016/j.toxlet.2013.10.001 | es_ES |
dc.description.references | Govin, J., & Berger, S. L. (2009). Genome reprogramming during sporulation. The International Journal of Developmental Biology, 53(2-3), 425-432. doi:10.1387/ijdb.082687jg | es_ES |
dc.description.references | Winter, E. (2012). The Sum1/Ndt80 Transcriptional Switch and Commitment to Meiosis in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 76(1), 1-15. doi:10.1128/mmbr.05010-11 | es_ES |
dc.description.references | Grunstein, M., & Gasser, S. M. (2013). Epigenetics in Saccharomyces cerevisiae. Cold Spring Harbor Perspectives in Biology, 5(7), a017491-a017491. doi:10.1101/cshperspect.a017491 | es_ES |
dc.description.references | Pijnappel, W. W. M. P. (2001). The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes & Development, 15(22), 2991-3004. doi:10.1101/gad.207401 | es_ES |
dc.description.references | Xie, J., Pierce, M., Gailus-Durner, V., Wagner, M., Winter, E., & Vershon, A. K. (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. The EMBO Journal, 18(22), 6448-6454. doi:10.1093/emboj/18.22.6448 | es_ES |
dc.description.references | Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 15(10), 608-624. doi:10.1038/nrc3985 | es_ES |
dc.description.references | Roth, M., & Chen, W. Y. (2013). Sorting out functions of sirtuins in cancer. Oncogene, 33(13), 1609-1620. doi:10.1038/onc.2013.120 | es_ES |
dc.description.references | Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13 | es_ES |
dc.description.references | Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905 | es_ES |