- -

Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vanacloig-Pedrós, Elena es_ES
dc.contributor.author Proft, Markus Hans es_ES
dc.contributor.author Pascual-Ahuir Giner, María Desamparados es_ES
dc.date.accessioned 2020-09-24T12:28:51Z
dc.date.available 2020-09-24T12:28:51Z
dc.date.issued 2016-09-22 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150635
dc.description.abstract [EN] Citrinin (CIT) and ochratoxin A (OTA) are important mycotoxins, which frequently co-contaminate foodstuff. In order to assess the toxicologic threat posed by the two mycotoxins separately or in combination, their biological effects were studied here using genomic transcription profiling and specific live cell gene expression reporters in yeast cells. Both CIT and OTA cause highly transient transcriptional activation of different stress genes, which is greatly enhanced by the disruption of the multidrug exporter Pdr5. Therefore, we performed genome-wide transcription profiling experiments with the pdr5 mutant in response to acute CIT, OTA, or combined CIT/OTA exposure. We found that CIT and OTA activate divergent and largely nonoverlapping gene sets in yeast. CIT mainly caused the rapid induction of antioxidant and drug extrusion-related gene functions, while OTA mainly deregulated developmental genes related with yeast sporulation and sexual reproduction, having only a minor effect on the antioxidant response. The simultaneous exposure to CIT and OTA gave rise to a genomic response, which combined the specific features of the separated mycotoxin treatments. The application of stress-specific mutants and reporter gene fusions further confirmed that both mycotoxins have divergent biological effects in cells. Our results indicate that CIT exposure causes a strong oxidative stress, which triggers a massive transcriptional antioxidant and drug extrusion response, while OTA mainly deregulates developmental genes and only marginally induces the antioxidant defense. es_ES
dc.description.sponsorship We thank Lorena Latorre and Javier Forment for their help with the microarray experiments and data analysis. This work was funded only in the initial phase by a grant from Ministerio de Economía y Competitividad (BFU2011-23326). We thank the Fond for Open Access Publication from Consejo Superior de Investigaciones Científicas (CSIC) for supporting publication costs of this article. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Toxins es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ochratoxin A es_ES
dc.subject Citrinin es_ES
dc.subject Transcriptome es_ES
dc.subject Saccharomyces cerevisiae es_ES
dc.subject Mycotoxins es_ES
dc.subject Oxidative stress es_ES
dc.subject Dose response es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/toxins8100273 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Vanacloig-Pedrós, E.; Proft, MH.; Pascual-Ahuir Giner, MD. (2016). Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast. Toxins. 8(10):1-20. https://doi.org/10.3390/toxins8100273 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/toxins8100273 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2072-6651 es_ES
dc.identifier.pmid 27669300 es_ES
dc.identifier.pmcid PMC5086634 es_ES
dc.relation.pasarela S\337379 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516. doi:10.1128/cmr.16.3.497-516.2003 es_ES
dc.description.references Marroquín-Cardona, A. G., Johnson, N. M., Phillips, T. D., & Hayes, A. W. (2014). Mycotoxins in a changing global environment – A review. Food and Chemical Toxicology, 69, 220-230. doi:10.1016/j.fct.2014.04.025 es_ES
dc.description.references Moretti, A., Susca, A., Mulé, G., Logrieco, A. F., & Proctor, R. H. (2013). Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International Journal of Food Microbiology, 167(1), 57-66. doi:10.1016/j.ijfoodmicro.2013.06.033 es_ES
dc.description.references Wu, F., Groopman, J. D., & Pestka, J. J. (2014). Public Health Impacts of Foodborne Mycotoxins. Annual Review of Food Science and Technology, 5(1), 351-372. doi:10.1146/annurev-food-030713-092431 es_ES
dc.description.references Möbius, N., & Hertweck, C. (2009). Fungal phytotoxins as mediators of virulence. Current Opinion in Plant Biology, 12(4), 390-398. doi:10.1016/j.pbi.2009.06.004 es_ES
dc.description.references Doi, K., & Uetsuka, K. (2014). Mechanisms of Mycotoxin-induced Dermal Toxicity and Tumorigenesis Through Oxidative Stress-related Pathways. Journal of Toxicologic Pathology, 27(1), 1-10. doi:10.1293/tox.2013-0062 es_ES
dc.description.references Escrivá, L., Font, G., & Manyes, L. (2015). In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology, 78, 185-206. doi:10.1016/j.fct.2015.02.005 es_ES
dc.description.references Vettorazzi, A., González-Peñas, E., & de Cerain, A. L. (2014). Ochratoxin A kinetics: A review of analytical methods and studies in rat model. Food and Chemical Toxicology, 72, 273-288. doi:10.1016/j.fct.2014.07.020 es_ES
dc.description.references Wang, Y., Wang, L., Liu, F., Wang, Q., Selvaraj, J., Xing, F., … Liu, Y. (2016). Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins, 8(3), 83. doi:10.3390/toxins8030083 es_ES
dc.description.references Kőszegi, T., & Poór, M. (2016). Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins, 8(4), 111. doi:10.3390/toxins8040111 es_ES
dc.description.references Faucet, V., Pfohl-Leszkowicz, A., Dai, J., Castegnaro, M., & Manderville, R. A. (2004). Evidence for Covalent DNA Adduction by Ochratoxin A following Chronic Exposure to Rat and Subacute Exposure to Pig. Chemical Research in Toxicology, 17(9), 1289-1296. doi:10.1021/tx049877s es_ES
dc.description.references Mantle, P. G., Faucet-Marquis, V., Manderville, R. A., Squillaci, B., & Pfohl-Leszkowicz, A. (2010). Structures of Covalent Adducts between DNA and Ochratoxin A: A New Factor in Debate about Genotoxicity and Human Risk Assessment. Chemical Research in Toxicology, 23(1), 89-98. doi:10.1021/tx900295a es_ES
dc.description.references Pfohl-Leszkowicz, A., & Manderville, R. A. (2011). An Update on Direct Genotoxicity as a Molecular Mechanism of Ochratoxin A Carcinogenicity. Chemical Research in Toxicology, 25(2), 252-262. doi:10.1021/tx200430f es_ES
dc.description.references Rahimtula, A. D., Béréziat, J.-C., Bussacchini-Griot, V., & Bartsch, H. (1988). Lipid peroxidation as a possible cause of ochratoxin a toxicity. Biochemical Pharmacology, 37(23), 4469-4477. doi:10.1016/0006-2952(88)90662-4 es_ES
dc.description.references Sorrenti, V., Di Giacomo, C., Acquaviva, R., Barbagallo, I., Bognanno, M., & Galvano, F. (2013). Toxicity of Ochratoxin A and Its Modulation by Antioxidants: A Review. Toxins, 5(10), 1742-1766. doi:10.3390/toxins5101742 es_ES
dc.description.references BRAGULAT, M., MARTINEZ, E., CASTELLA, G., & CABANES, F. (2008). Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. International Journal of Food Microbiology, 126(1-2), 43-48. doi:10.1016/j.ijfoodmicro.2008.04.034 es_ES
dc.description.references Vrabcheva, T., Usleber, E., Dietrich, R., & Märtlbauer, E. (2000). Co-occurrence of Ochratoxin A and Citrinin in Cereals from Bulgarian Villages with a History of Balkan Endemic Nephropathy. Journal of Agricultural and Food Chemistry, 48(6), 2483-2488. doi:10.1021/jf990891y es_ES
dc.description.references Ostry, V., Malir, F., & Ruprich, J. (2013). Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins, 5(9), 1574-1586. doi:10.3390/toxins5091574 es_ES
dc.description.references Schmidt-Heydt, M., Graf, E., Stoll, D., & Geisen, R. (2012). The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods. Food Microbiology, 29(2), 233-241. doi:10.1016/j.fm.2011.08.003 es_ES
dc.description.references Schmidt-Heydt, M., Stoll, D., Schütz, P., & Geisen, R. (2015). Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. International Journal of Food Microbiology, 192, 1-6. doi:10.1016/j.ijfoodmicro.2014.09.008 es_ES
dc.description.references Stoll, D., Schmidt-Heydt, M., & Geisen, R. (2013). Differences in the Regulation of Ochratoxin A by the HOG Pathway in Penicillium and Aspergillus in Response to High Osmolar Environments. Toxins, 5(7), 1282-1298. doi:10.3390/toxins5071282 es_ES
dc.description.references Flajs, D., & Peraica, M. (2009). Toxicological Properties of Citrinin. Archives of Industrial Hygiene and Toxicology, 60(4), 457-464. doi:10.2478/10004-1254-60-2009-1992 es_ES
dc.description.references Bouslimi, A., Ouannes, Z., Golli, E. E., Bouaziz, C., Hassen, W., & Bacha, H. (2008). Cytotoxicity and Oxidative Damage in Kidney Cells Exposed to the Mycotoxins Ochratoxin A and Citrinin: Individual and Combined Effects. Toxicology Mechanisms and Methods, 18(4), 341-349. doi:10.1080/15376510701556682 es_ES
dc.description.references Chan, W.-H. (2007). Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochemical Journal, 404(2), 317-326. doi:10.1042/bj20061875 es_ES
dc.description.references Kumar, M., Dwivedi, P., Sharma, A. K., Sankar, M., Patil, R. D., & Singh, N. D. (2012). Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicology and Industrial Health, 30(1), 90-98. doi:10.1177/0748233712452598 es_ES
dc.description.references Kumar, R., Dwivedi, P. D., Dhawan, A., Das, M., & Ansari, K. M. (2011). Citrinin-Generated Reactive Oxygen Species Cause Cell Cycle Arrest Leading to Apoptosis via the Intrinsic Mitochondrial Pathway in Mouse Skin. Toxicological Sciences, 122(2), 557-566. doi:10.1093/toxsci/kfr143 es_ES
dc.description.references Máté, G., Gazdag, Z., Mike, N., Papp, G., Pócsi, I., & Pesti, M. (2014). Regulation of oxidative stress-induced cytotoxic processes of citrinin in the fission yeast Schizosaccharomyces pombe. Toxicon, 90, 155-166. doi:10.1016/j.toxicon.2014.08.005 es_ES
dc.description.references Pascual-Ahuir, A., Vanacloig-Pedros, E., & Proft, M. (2014). Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model. Nutrients, 6(5), 2077-2087. doi:10.3390/nu6052077 es_ES
dc.description.references Ribeiro, S. M. R., Chagas, G. M., Campello, A. P., & Kluppel, M. L. W. (1997). Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochemistry and Function, 15(3), 203-209. doi:10.1002/(sici)1099-0844(199709)15:3<203::aid-cbf742>3.0.co;2-j es_ES
dc.description.references Singh, N. D., Sharma, A. K., Dwivedi, P., Leishangthem, G. D., Rahman, S., Reddy, J., & Kumar, M. (2013). Effect of feeding graded doses of citrinin on apoptosis and oxidative stress in male Wistar rats through the F1generation. Toxicology and Industrial Health, 32(3), 385-397. doi:10.1177/0748233713500836 es_ES
dc.description.references Yu, F.-Y., Liao, Y.-C., Chang, C.-H., & Liu, B.-H. (2006). Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicology Letters, 161(2), 143-151. doi:10.1016/j.toxlet.2005.08.009 es_ES
dc.description.references Föllmann, W., Behm, C., & Degen, G. H. (2014). Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Archives of Toxicology, 88(5), 1097-1107. doi:10.1007/s00204-014-1216-8 es_ES
dc.description.references Klarić, M., Rašić, D., & Peraica, M. (2013). Deleterious Effects of Mycotoxin Combinations Involving Ochratoxin A. Toxins, 5(11), 1965-1987. doi:10.3390/toxins5111965 es_ES
dc.description.references Afshari, C. A., Hamadeh, H. K., & Bushel, P. R. (2010). The Evolution of Bioinformatics in Toxicology: Advancing Toxicogenomics. Toxicological Sciences, 120(Supplement 1), S225-S237. doi:10.1093/toxsci/kfq373 es_ES
dc.description.references Yasokawa, D., & Iwahashi, H. (2010). Toxicogenomics using yeast DNA microarrays. Journal of Bioscience and Bioengineering, 110(5), 511-522. doi:10.1016/j.jbiosc.2010.06.003 es_ES
dc.description.references Arbillaga, L., Azqueta, A., van Delft, J. H. M., & López de Cerain, A. (2007). In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicology and Applied Pharmacology, 220(2), 216-224. doi:10.1016/j.taap.2007.01.008 es_ES
dc.description.references Hibi, D., Kijima, A., Kuroda, K., Suzuki, Y., Ishii, Y., Jin, M., … Umemura, T. (2013). Molecular mechanisms underlying ochratoxin A-induced genotoxicity: global gene expression analysis suggests induction of DNA double-strand breaks and cell cycle progression. The Journal of Toxicological Sciences, 38(1), 57-69. doi:10.2131/jts.38.57 es_ES
dc.description.references Marin-Kuan, M., Nestler, S., Verguet, C., Bezençon, C., Piguet, D., Mansourian, R., … Schilter, B. (2005). A Toxicogenomics Approach to Identify New Plausible Epigenetic Mechanisms of Ochratoxin A Carcinogenicity in Rat. Toxicological Sciences, 89(1), 120-134. doi:10.1093/toxsci/kfj017 es_ES
dc.description.references Vettorazzi, A., van Delft, J., & López de Cerain, A. (2013). A review on ochratoxin A transcriptomic studies. Food and Chemical Toxicology, 59, 766-783. doi:10.1016/j.fct.2013.05.043 es_ES
dc.description.references Iwahashi, H., Kitagawa, E., Suzuki, Y., Ueda, Y., Ishizawa, Y., Nobumasa, H., … Iwahashi, Y. (2007). Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics, 8(1), 95. doi:10.1186/1471-2164-8-95 es_ES
dc.description.references Toone, W. M., Morgan, B. A., & Jones, N. (2001). Redox control of AP-1-like factors in yeast and beyond. Oncogene, 20(19), 2336-2346. doi:10.1038/sj.onc.1204384 es_ES
dc.description.references Luo, Y., Wang, J., Liu, B., Wang, Z., Yuan, Y., & Yue, T. (2015). Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption. PLOS ONE, 10(8), e0136045. doi:10.1371/journal.pone.0136045 es_ES
dc.description.references Piotrowska, M., & Masek, A. (2015). Saccharomyces Cerevisiae Cell Wall Components as Tools for Ochratoxin A Decontamination. Toxins, 7(4), 1151-1162. doi:10.3390/toxins7041151 es_ES
dc.description.references Jungwirth, H., & Kuchler, K. (2005). Yeast ABC transporters - A tale of sex, stress, drugs and aging. FEBS Letters, 580(4), 1131-1138. doi:10.1016/j.febslet.2005.12.050 es_ES
dc.description.references Prasad, R., & Goffeau, A. (2012). Yeast ATP-Binding Cassette Transporters Conferring Multidrug Resistance. Annual Review of Microbiology, 66(1), 39-63. doi:10.1146/annurev-micro-092611-150111 es_ES
dc.description.references Thakur, J. K., Arthanari, H., Yang, F., Pan, S.-J., Fan, X., Breger, J., … Näär, A. M. (2008). A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature, 452(7187), 604-609. doi:10.1038/nature06836 es_ES
dc.description.references Chen, C.-C., & Chan, W.-H. (2009). Inhibition of Citrinin-Induced Apoptotic Biochemical Signaling in Human Hepatoma G2 Cells by Resveratrol. International Journal of Molecular Sciences, 10(8), 3338-3357. doi:10.3390/ijms10083338 es_ES
dc.description.references Gayathri, L., Dhivya, R., Dhanasekaran, D., Periasamy, V. S., Alshatwi, A. A., & Akbarsha, M. A. (2015). Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food and Chemical Toxicology, 83, 151-163. doi:10.1016/j.fct.2015.06.009 es_ES
dc.description.references ALEO, M. (1991). The role of altered mitochondrial function in citrinin-induced toxicity to rat renal proximal tubule suspensions*1. Toxicology and Applied Pharmacology, 109(3), 455-463. doi:10.1016/0041-008x(91)90008-3 es_ES
dc.description.references Qi, X., Yu, T., Zhu, L., Gao, J., He, X., Huang, K., … Xu, W. (2014). Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses. Toxicology and Applied Pharmacology, 280(3), 543-549. doi:10.1016/j.taap.2014.08.030 es_ES
dc.description.references Taniai, E., Yafune, A., Nakajima, M., Hayashi, S.-M., Nakane, F., Itahashi, M., & Shibutani, M. (2014). Ochratoxin A induces karyomegaly and cell cycle aberrations in renal tubular cells without relation to induction of oxidative stress responses in rats. Toxicology Letters, 224(1), 64-72. doi:10.1016/j.toxlet.2013.10.001 es_ES
dc.description.references Govin, J., & Berger, S. L. (2009). Genome reprogramming during sporulation. The International Journal of Developmental Biology, 53(2-3), 425-432. doi:10.1387/ijdb.082687jg es_ES
dc.description.references Winter, E. (2012). The Sum1/Ndt80 Transcriptional Switch and Commitment to Meiosis in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 76(1), 1-15. doi:10.1128/mmbr.05010-11 es_ES
dc.description.references Grunstein, M., & Gasser, S. M. (2013). Epigenetics in Saccharomyces cerevisiae. Cold Spring Harbor Perspectives in Biology, 5(7), a017491-a017491. doi:10.1101/cshperspect.a017491 es_ES
dc.description.references Pijnappel, W. W. M. P. (2001). The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes & Development, 15(22), 2991-3004. doi:10.1101/gad.207401 es_ES
dc.description.references Xie, J., Pierce, M., Gailus-Durner, V., Wagner, M., Winter, E., & Vershon, A. K. (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. The EMBO Journal, 18(22), 6448-6454. doi:10.1093/emboj/18.22.6448 es_ES
dc.description.references Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 15(10), 608-624. doi:10.1038/nrc3985 es_ES
dc.description.references Roth, M., & Chen, W. Y. (2013). Sorting out functions of sirtuins in cancer. Oncogene, 33(13), 1609-1620. doi:10.1038/onc.2013.120 es_ES
dc.description.references Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13 es_ES
dc.description.references Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem