Mostrar el registro sencillo del ítem
dc.contributor.author | Debón Aucejo, Ana María | es_ES |
dc.contributor.author | Montes-Suay, Francisco | es_ES |
dc.contributor.author | Sala-Garrido, Ramón | es_ES |
dc.date.accessioned | 2020-09-24T12:29:00Z | |
dc.date.available | 2020-09-24T12:29:00Z | |
dc.date.issued | 2006-08 | es_ES |
dc.identifier.issn | 0306-7734 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150639 | |
dc.description.abstract | [EN] The nonparametric graduation of mortality data aims to estimate death rates by carrying out a smoothing of the crude rates obtained directly from original data. The main difference with regard to parametric models is that the assumption of an age-dependent function is unnecessary, which is advantageous when the information behind the model is unknown, as one cause of error is often the choice of an inappropriate model. This paper reviews the various alternatives and presents their application to mortality data from the Valencia Region, Spain. The comparison leads us to the conclusion that the best model is a smoothing by means of Generalised Additive Models (GAM) with splines. The most interesting part of this paper is the development of a plan that can be applied to mortality data for a wide range of age groups in any geographical area, allowing the most appropriate table to be chosen for the data in hand. | es_ES |
dc.description.sponsorship | The authors are indebted to the anonymous referees whose suggestions improved the original manuscript. This work was partially supported by a grant from MEyC (Ministerio de Educación y Ciencia, Spain, project MTM-2004-06231).The research of Francisco Montes has also been partially supported by a grant from DGITT (Direcció General d Investigació i Transferència Tecnològica de la Generalitat Valenciana, Project GRUPOS03/189). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | International Statistical Review | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | GAM | es_ES |
dc.subject | Kernel smoothing | es_ES |
dc.subject | Life tables | es_ES |
dc.subject | LOESS | es_ES |
dc.subject | Splines | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | A Comparison of Nonparametric Methods in the Graduation of Mortality: Application to Data from the Valencia Region (Spain) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/j.1751-5823.2006.tb00171.x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRUPOS03%2F189/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MTM2004-06231/ES/MODELIZACION ESTADISTICA PARA DATOS CON IMPLANTACION ESPACIAL Y EVOLUCION TEMPORAL. APLICACIONES EN TABLAS DINAMICAS DE MORTALIDAD Y POTENCIALES EVOCADOS EN PSICOLOGIA Y NEUROFISIOLOGIA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Debón Aucejo, AM.; Montes-Suay, F.; Sala-Garrido, R. (2006). A Comparison of Nonparametric Methods in the Graduation of Mortality: Application to Data from the Valencia Region (Spain). International Statistical Review. 74(2):215-233. https://doi.org/10.1111/j.1751-5823.2006.tb00171.x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/j.1751-5823.2006.tb00171.x | es_ES |
dc.description.upvformatpinicio | 215 | es_ES |
dc.description.upvformatpfin | 233 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 74 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\30139 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Bloomfield, D. S. F., & Haberman, S. (1987). Graduation: some experiments with kernel methods. Journal of the Institute of Actuaries, 114(2), 339-369. doi:10.1017/s0020268100019090 | es_ES |
dc.description.references | Breiman, L., & Peters, S. (1992). Comparing Automatic Smoothers (A Public Service Enterprise). International Statistical Review / Revue Internationale de Statistique, 60(3), 271. doi:10.2307/1403679 | es_ES |
dc.description.references | Brockmann, M., Gasser, T., & Herrmann, E. (1993). Locally Adaptive Bandwidth Choice for Kernel Regression Estimators. Journal of the American Statistical Association, 88(424), 1302-1309. doi:10.1080/01621459.1993.10476411 | es_ES |
dc.description.references | Chan,, F. Y., Chan, L. K., Falkenberg, J., & Yu, M. H. (1986). Applications of linear and quadratic programmings to some cases of the Whittaker-Henderson graduation method. Scandinavian Actuarial Journal, 1986(3-4), 141-153. doi:10.1080/03461238.1986.10413805 | es_ES |
dc.description.references | Clements, M. S. (2005). Lung cancer rate predictions using generalized additive models. Biostatistics, 6(4), 576-589. doi:10.1093/biostatistics/kxi028 | es_ES |
dc.description.references | Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. doi:10.1080/01621459.1979.10481038 | es_ES |
dc.description.references | Copas, J. B., & Haberman, S. (1983). Non-parametric graduation using kernel methods. Journal of the Institute of Actuaries, 110(01), 135-156. doi:10.1017/s0020268100041275 | es_ES |
dc.description.references | Epanechnikov, V. A. (1969). Non-Parametric Estimation of a Multivariate Probability Density. Theory of Probability & Its Applications, 14(1), 153-158. doi:10.1137/1114019 | es_ES |
dc.description.references | Felipe, A., Guillen, M., & Perez-Marin, A. M. (2002). Recent Mortality Trends in the Spanish Population. British Actuarial Journal, 8(4), 757-786. doi:10.1017/s1357321700003901 | es_ES |
dc.description.references | Forfar, D. O., McCutcheon, J. J., & Wilkie, A. D. (1988). On graduation by mathematical formula. Journal of the Institute of Actuaries, 115(1), 1-149. doi:10.1017/s0020268100042633 | es_ES |
dc.description.references | Gasser, T., Kneip, A., & Köhler, W. (1991). A Flexible and Fast Method for Automatic Smoothing. Journal of the American Statistical Association, 86(415), 643-652. doi:10.1080/01621459.1991.10475090 | es_ES |
dc.description.references | Gasser, T., & Müller, H.-G. (1979). Kernel estimation of regression functions. Smoothing Techniques for Curve Estimation, 23-68. doi:10.1007/bfb0098489 | es_ES |
dc.description.references | Gavin, J. B., Haberman, S., & Verrall, R. J. (1994). On the choice of bandwidth for kernel graduation. Journal of the Institute of Actuaries, 121(1), 119-134. doi:10.1017/s0020268100020102 | es_ES |
dc.description.references | Guillen, M., Nielsen, J. P., & Perez-Marin, A. M. (2006). Multiplicative Hazard Models for Studying the Evolution of Mortality. Annals of Actuarial Science, 1(1), 165-177. doi:10.1017/s1748499500000099 | es_ES |
dc.description.references | Heligman, L., & Pollard, J. H. (1980). The age pattern of mortality. Journal of the Institute of Actuaries, 107(1), 49-80. doi:10.1017/s0020268100040257 | es_ES |
dc.description.references | Hoem, J. M., & Linnemann, P. (1988). The tails in moving average graduation. Scandinavian Actuarial Journal, 1988(4), 193-229. doi:10.1080/03461238.1988.10413848 | es_ES |
dc.description.references | McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. doi:10.1007/978-1-4899-3242-6 | es_ES |
dc.description.references | Nadaraya, E. A. (1964). On Estimating Regression. Theory of Probability & Its Applications, 9(1), 141-142. doi:10.1137/1109020 | es_ES |
dc.description.references | Nielsen, J. P. (2003). Smoothing and Prediction with a View to Actuarial Science, Biostatistics and Finance. Scandinavian Actuarial Journal, 2003(1), 51-74. doi:10.1080/03461230308484 | es_ES |
dc.description.references | Silverman, B. W. (1984). A Fast and Efficient Cross-Validation Method for Smoothing Parameter Choice in Spline Regression. Journal of the American Statistical Association, 79(387), 584-589. doi:10.1080/01621459.1984.10478084 | es_ES |
dc.description.references | Verrall, R. J. (1993). Graduation by dynamic regression methods. Journal of the Institute of Actuaries, 120(1), 153-170. doi:10.1017/s002026810003688x | es_ES |
dc.description.references | Wang, J.-L., Müller, H.-G., & Capra, W. B. (1998). Analysis of oldest-old mortality: lifetables revisited. The Annals of Statistics, 26(1), 126-163. doi:10.1214/aos/1030563980 | es_ES |
dc.description.references | Whittaker, E. T. (1922). On a New Method of Graduation. Proceedings of the Edinburgh Mathematical Society, 41, 63-75. doi:10.1017/s0013091500077853 | es_ES |
dc.description.references | Zhang, H. (2004). Mixed effects multivariate adaptive splines model for the analysis of longitudinal and growth curve data. Statistical Methods in Medical Research, 13(1), 63-82. doi:10.1191/0962280204sm353ra | es_ES |