- -

A Comparison of Nonparametric Methods in the Graduation of Mortality: Application to Data from the Valencia Region (Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Comparison of Nonparametric Methods in the Graduation of Mortality: Application to Data from the Valencia Region (Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Debón Aucejo, Ana María es_ES
dc.contributor.author Montes-Suay, Francisco es_ES
dc.contributor.author Sala-Garrido, Ramón es_ES
dc.date.accessioned 2020-09-24T12:29:00Z
dc.date.available 2020-09-24T12:29:00Z
dc.date.issued 2006-08 es_ES
dc.identifier.issn 0306-7734 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150639
dc.description.abstract [EN] The nonparametric graduation of mortality data aims to estimate death rates by carrying out a smoothing of the crude rates obtained directly from original data. The main difference with regard to parametric models is that the assumption of an age-dependent function is unnecessary, which is advantageous when the information behind the model is unknown, as one cause of error is often the choice of an inappropriate model. This paper reviews the various alternatives and presents their application to mortality data from the Valencia Region, Spain. The comparison leads us to the conclusion that the best model is a smoothing by means of Generalised Additive Models (GAM) with splines. The most interesting part of this paper is the development of a plan that can be applied to mortality data for a wide range of age groups in any geographical area, allowing the most appropriate table to be chosen for the data in hand. es_ES
dc.description.sponsorship The authors are indebted to the anonymous referees whose suggestions improved the original manuscript. This work was partially supported by a grant from MEyC (Ministerio de Educación y Ciencia, Spain, project MTM-2004-06231).The research of Francisco Montes has also been partially supported by a grant from DGITT (Direcció General d Investigació i Transferència Tecnològica de la Generalitat Valenciana, Project GRUPOS03/189). es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof International Statistical Review es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject GAM es_ES
dc.subject Kernel smoothing es_ES
dc.subject Life tables es_ES
dc.subject LOESS es_ES
dc.subject Splines es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A Comparison of Nonparametric Methods in the Graduation of Mortality: Application to Data from the Valencia Region (Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1751-5823.2006.tb00171.x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRUPOS03%2F189/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MTM2004-06231/ES/MODELIZACION ESTADISTICA PARA DATOS CON IMPLANTACION ESPACIAL Y EVOLUCION TEMPORAL. APLICACIONES EN TABLAS DINAMICAS DE MORTALIDAD Y POTENCIALES EVOCADOS EN PSICOLOGIA Y NEUROFISIOLOGIA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Debón Aucejo, AM.; Montes-Suay, F.; Sala-Garrido, R. (2006). A Comparison of Nonparametric Methods in the Graduation of Mortality: Application to Data from the Valencia Region (Spain). International Statistical Review. 74(2):215-233. https://doi.org/10.1111/j.1751-5823.2006.tb00171.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/j.1751-5823.2006.tb00171.x es_ES
dc.description.upvformatpinicio 215 es_ES
dc.description.upvformatpfin 233 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 74 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\30139 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Bloomfield, D. S. F., & Haberman, S. (1987). Graduation: some experiments with kernel methods. Journal of the Institute of Actuaries, 114(2), 339-369. doi:10.1017/s0020268100019090 es_ES
dc.description.references Breiman, L., & Peters, S. (1992). Comparing Automatic Smoothers (A Public Service Enterprise). International Statistical Review / Revue Internationale de Statistique, 60(3), 271. doi:10.2307/1403679 es_ES
dc.description.references Brockmann, M., Gasser, T., & Herrmann, E. (1993). Locally Adaptive Bandwidth Choice for Kernel Regression Estimators. Journal of the American Statistical Association, 88(424), 1302-1309. doi:10.1080/01621459.1993.10476411 es_ES
dc.description.references Chan,, F. Y., Chan, L. K., Falkenberg, J., & Yu, M. H. (1986). Applications of linear and quadratic programmings to some cases of the Whittaker-Henderson graduation method. Scandinavian Actuarial Journal, 1986(3-4), 141-153. doi:10.1080/03461238.1986.10413805 es_ES
dc.description.references Clements, M. S. (2005). Lung cancer rate predictions using generalized additive models. Biostatistics, 6(4), 576-589. doi:10.1093/biostatistics/kxi028 es_ES
dc.description.references Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829-836. doi:10.1080/01621459.1979.10481038 es_ES
dc.description.references Copas, J. B., & Haberman, S. (1983). Non-parametric graduation using kernel methods. Journal of the Institute of Actuaries, 110(01), 135-156. doi:10.1017/s0020268100041275 es_ES
dc.description.references Epanechnikov, V. A. (1969). Non-Parametric Estimation of a Multivariate Probability Density. Theory of Probability & Its Applications, 14(1), 153-158. doi:10.1137/1114019 es_ES
dc.description.references Felipe, A., Guillen, M., & Perez-Marin, A. M. (2002). Recent Mortality Trends in the Spanish Population. British Actuarial Journal, 8(4), 757-786. doi:10.1017/s1357321700003901 es_ES
dc.description.references Forfar, D. O., McCutcheon, J. J., & Wilkie, A. D. (1988). On graduation by mathematical formula. Journal of the Institute of Actuaries, 115(1), 1-149. doi:10.1017/s0020268100042633 es_ES
dc.description.references Gasser, T., Kneip, A., & Köhler, W. (1991). A Flexible and Fast Method for Automatic Smoothing. Journal of the American Statistical Association, 86(415), 643-652. doi:10.1080/01621459.1991.10475090 es_ES
dc.description.references Gasser, T., & Müller, H.-G. (1979). Kernel estimation of regression functions. Smoothing Techniques for Curve Estimation, 23-68. doi:10.1007/bfb0098489 es_ES
dc.description.references Gavin, J. B., Haberman, S., & Verrall, R. J. (1994). On the choice of bandwidth for kernel graduation. Journal of the Institute of Actuaries, 121(1), 119-134. doi:10.1017/s0020268100020102 es_ES
dc.description.references Guillen, M., Nielsen, J. P., & Perez-Marin, A. M. (2006). Multiplicative Hazard Models for Studying the Evolution of Mortality. Annals of Actuarial Science, 1(1), 165-177. doi:10.1017/s1748499500000099 es_ES
dc.description.references Heligman, L., & Pollard, J. H. (1980). The age pattern of mortality. Journal of the Institute of Actuaries, 107(1), 49-80. doi:10.1017/s0020268100040257 es_ES
dc.description.references Hoem, J. M., & Linnemann, P. (1988). The tails in moving average graduation. Scandinavian Actuarial Journal, 1988(4), 193-229. doi:10.1080/03461238.1988.10413848 es_ES
dc.description.references McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. doi:10.1007/978-1-4899-3242-6 es_ES
dc.description.references Nadaraya, E. A. (1964). On Estimating Regression. Theory of Probability & Its Applications, 9(1), 141-142. doi:10.1137/1109020 es_ES
dc.description.references Nielsen, J. P. (2003). Smoothing and Prediction with a View to Actuarial Science, Biostatistics and Finance. Scandinavian Actuarial Journal, 2003(1), 51-74. doi:10.1080/03461230308484 es_ES
dc.description.references Silverman, B. W. (1984). A Fast and Efficient Cross-Validation Method for Smoothing Parameter Choice in Spline Regression. Journal of the American Statistical Association, 79(387), 584-589. doi:10.1080/01621459.1984.10478084 es_ES
dc.description.references Verrall, R. J. (1993). Graduation by dynamic regression methods. Journal of the Institute of Actuaries, 120(1), 153-170. doi:10.1017/s002026810003688x es_ES
dc.description.references Wang, J.-L., Müller, H.-G., & Capra, W. B. (1998). Analysis of oldest-old mortality: lifetables revisited. The Annals of Statistics, 26(1), 126-163. doi:10.1214/aos/1030563980 es_ES
dc.description.references Whittaker, E. T. (1922). On a New Method of Graduation. Proceedings of the Edinburgh Mathematical Society, 41, 63-75. doi:10.1017/s0013091500077853 es_ES
dc.description.references Zhang, H. (2004). Mixed effects multivariate adaptive splines model for the analysis of longitudinal and growth curve data. Statistical Methods in Medical Research, 13(1), 63-82. doi:10.1191/0962280204sm353ra es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem