- -

Toward a modular precision ecosystem for high performance computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Toward a modular precision ecosystem for high performance computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Anzt, Hartwig es_ES
dc.contributor.author Flegar, Goran es_ES
dc.contributor.author Gruetzmacher, Thomas es_ES
dc.contributor.author Quintana-Orti, Enrique S. es_ES
dc.date.accessioned 2020-09-24T12:29:46Z
dc.date.available 2020-09-24T12:29:46Z
dc.date.issued 2019-11 es_ES
dc.identifier.issn 1094-3420 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150659
dc.description.abstract [EN] With the memory bandwidth of current computer architectures being significantly slower than the (floating point) arithmetic performance, many scientific computations only leverage a fraction of the computational power in today's high-performance architectures. At the same time, memory operations are the primary energy consumer of modern architectures, heavily impacting the resource cost of large-scale applications and the battery life of mobile devices. This article tackles this mismatch between floating point arithmetic throughput and memory bandwidth by advocating a disruptive paradigm change with respect to how data are stored and processed in scientific applications. Concretely, the goal is to radically decouple the data storage format from the processing format and, ultimately, design a "modular precision ecosystem" that allows for more flexibility in terms of customized data access. For memory-bounded scientific applications, dynamically adapting the memory precision to the numerical requirements allows for attractive resource savings. In this article, we demonstrate the potential of employing a modular precision ecosystem for the block-Jacobi preconditioner and the PageRank algorithm-two applications that are popular in the communities and at the same characteristic representatives for the field of numerical linear algebra and data analytics, respectively. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Impuls und Vernetzungsfond of the Helmholtz Association under grant VH-NG-1241. G Flegar and ES Quintana-Ortí were supported by project TIN2017-82972-R of the MINECO and FEDER and the H2020 EU FETHPC Project 732631 OPRECOMP . es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of High Performance Computing Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Modular precision es_ES
dc.subject Parallel numerical linear algebra es_ES
dc.subject Jacobi method es_ES
dc.subject PageRank es_ES
dc.subject Conjugate gradient es_ES
dc.subject Multicore processors es_ES
dc.subject GPUs es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Toward a modular precision ecosystem for high performance computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1094342019846547 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732631/EU/Open transPREcision COMPuting/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Helmholtz Association of German Research Centers//VH-NG-1241/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Anzt, H.; Flegar, G.; Gruetzmacher, T.; Quintana-Orti, ES. (2019). Toward a modular precision ecosystem for high performance computing. International Journal of High Performance Computing Applications. 33(6):1069-1078. https://doi.org/10.1177/1094342019846547 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1094342019846547 es_ES
dc.description.upvformatpinicio 1069 es_ES
dc.description.upvformatpfin 1078 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\393550 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Anzt, H., Dongarra, J., & Quintana-Ortí, E. S. (2015). Adaptive precision solvers for sparse linear systems. Proceedings of the 3rd International Workshop on Energy Efficient Supercomputing - E2SC ’15. doi:10.1145/2834800.2834802 es_ES
dc.description.references Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., … Tomov, S. (2009). Accelerating scientific computations with mixed precision algorithms. Computer Physics Communications, 180(12), 2526-2533. doi:10.1016/j.cpc.2008.11.005 es_ES
dc.description.references Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., & Kurzak, J. (2007). Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems. The International Journal of High Performance Computing Applications, 21(4), 457-466. doi:10.1177/1094342007084026 es_ES
dc.description.references Carson, E., & Higham, N. J. (2017). A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems. SIAM Journal on Scientific Computing, 39(6), A2834-A2856. doi:10.1137/17m1122918 es_ES
dc.description.references Carson, E., & Higham, N. J. (2018). Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40(2), A817-A847. doi:10.1137/17m1140819 es_ES
dc.description.references Göddeke, D., Strzodka, R., & Turek, S. (2007). Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations. International Journal of Parallel, Emergent and Distributed Systems, 22(4), 221-256. doi:10.1080/17445760601122076 es_ES
dc.description.references Grützmacher, T., & Anzt, H. (2018). A Modular Precision Format for Decoupling Arithmetic Format and Storage Format. Euro-Par 2018: Parallel Processing Workshops, 434-443. doi:10.1007/978-3-030-10549-5_34 es_ES
dc.description.references Grutzmacher, T., Anzt, H., Scheidegger, F., & Quintana-Orti, E. S. (2018). High-Performance GPU Implementation of PageRank with Reduced Precision Based on Mantissa Segmentation. 2018 IEEE/ACM 8th Workshop on Irregular Applications: Architectures and Algorithms (IA3). doi:10.1109/ia3.2018.00015 es_ES
dc.description.references Hegland, M., & Saylor, P. E. (1992). Block jacobi preconditioning of the conjugate gradient method on a vector processor. International Journal of Computer Mathematics, 44(1-4), 71-89. doi:10.1080/00207169208804096 es_ES
dc.description.references Horowitz, M. (2014). 1.1 Computing’s energy problem (and what we can do about it). 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). doi:10.1109/isscc.2014.6757323 es_ES
dc.description.references Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003 es_ES
dc.description.references Strzodka, R., & Goddeke, D. (2006). Pipelined Mixed Precision Algorithms on FPGAs for Fast and Accurate PDE Solvers from Low Precision Components. 2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines. doi:10.1109/fccm.2006.57 es_ES
dc.description.references Tadano, H., & Sakurai, T. (2008). On Single Precision Preconditioners for Krylov Subspace Iterative Methods. Lecture Notes in Computer Science, 721-728. doi:10.1007/978-3-540-78827-0_83 es_ES
dc.description.references Wulf, W. A., & McKee, S. A. (1995). Hitting the memory wall. ACM SIGARCH Computer Architecture News, 23(1), 20-24. doi:10.1145/216585.216588 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem