Mostrar el registro sencillo del ítem
dc.contributor.author | Ribal, Javier | es_ES |
dc.contributor.author | Estruch, Vicente | es_ES |
dc.contributor.author | Clemente, Gabriela | es_ES |
dc.contributor.author | Loreto Fenollosa, M. | es_ES |
dc.contributor.author | Sanjuan, Neus | es_ES |
dc.date.accessioned | 2020-09-24T12:30:05Z | |
dc.date.available | 2020-09-24T12:30:05Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.issn | 0948-3349 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150668 | |
dc.description.abstract | [EN] Purpose This study aims to analyse the variability in the carbon footprint (CF) of organically and conventionally produced Valencian oranges (Spain), including both farming and post-harvest (PH) stages. At the same time, two issues regarding sample representativeness are addressed: how to determine confidence intervals from small samples and how to calculate the aggregated mean CF (and its variability) when the inventory is derived from different sources. Methods The functional unit was 1 kg of oranges at a European distribution centre. Farming data come from a survey of two samples of organic and conventional farms; PH data come from one PH centre; and data on exportation to the main European markets were obtained from official secondary sources. To assess the variability of the farming subsystem, a bootstrap of the mean CF was performed. The variability of the PH subsystem was assessed through a Monte Carlo simulation and a subsequent subsampling bootstrap. A weighted discrete distribution of the CF of distribution and end-of-life (EoL) was built, which was also bootstrapped. The empirical distribution of the overall CF was obtained by summing all iterations of the three bootstrap procedures of the subsystems. Results and discussion The CF of the baseline scenarios for conventional and organic production were 0.82 and 0.67 kg CO2 equivalent·kg orange¿1, respectively; the difference between their values was due mainly to differences in the farming subsystem. Distribution and EoL was the subsystem contributing the most to the CF (59.3 and 75.7% of the total CF for conventional and organic oranges, respectively), followed by the farming subsystem (34.1 and 19.8% for conventional and organic oranges, respectively). The confidence intervals for the CF of oranges were 0.72¿0.92 and 0.61¿0.82 kg CO2 equivalent·kg orange¿1 for conventional and organic oranges, respectively, and a significant difference was found between them. If organic production were to reach 50% of the total exported production, the CF would be reduced by 5.4¿8.4%. Conclusions The case study and the methods used show that bootstrap techniques can help to test for the existence of significant differences and estimate confidence intervals of the mean CF. Furthermore, these techniques allow several CF sources to be combined so as to estimate the uncertainty in the mean CF estimate. Assessing the variability in the mean CF (or in other environmental impacts) gives a more reliable measure of the mean impact. | es_ES |
dc.description.sponsorship | The Spanish Ministerio de Economia y Competitividad for provided financial support in the project Design of a life-cycle indicator for sustainability in agricultural systems (CTM2013-47340-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | International Journal of Life Cycle Assessment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bootstrap | es_ES |
dc.subject | Carbon footprint | es_ES |
dc.subject | Confidence interval | es_ES |
dc.subject | Oranges | es_ES |
dc.subject | Organic | es_ES |
dc.subject | Variability | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.subject.classification | ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA | es_ES |
dc.title | Assessing variability in carbon footprint throughout the food supply chain: a case study of Valencian oranges | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11367-018-01580-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2013-47340-R/ES/DISEÑO DE UN INDICADOR DE SOSTENIBILIDAD DEL CICLO DE VIDA PARA LOS SISTEMAS AGRARIOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Ribal, J.; Estruch, V.; Clemente, G.; Loreto Fenollosa, M.; Sanjuan, N. (2019). Assessing variability in carbon footprint throughout the food supply chain: a case study of Valencian oranges. International Journal of Life Cycle Assessment. 24(8):1515-1532. https://doi.org/10.1007/s11367-018-01580-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11367-018-01580-9 | es_ES |
dc.description.upvformatpinicio | 1515 | es_ES |
dc.description.upvformatpfin | 1532 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\403779 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Agustí M, Martínez-Fuentes A, Mesejo C (2002) Citrus fruit quality. Physiological basis and techniques of improvement. Agrociencia 6(2):1–16 | es_ES |
dc.description.references | Altman N, Krzywinski M (2017) Points of significance: P values and the search for significance. Nat Methods 14:1–4 | es_ES |
dc.description.references | De Backer ED, Aertsens J, Vergucht S, Steurbaut W (2009) Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA): a case study of leek production. Brit Food J 111(10):1028–1061 | es_ES |
dc.description.references | Beccali M, Cellura M, Iudicello M, Mistretta M (2009) Resource consumption and environmental impacts of the Agrofood sector: life cycle assessment of Italian citrus-based products. J Environ Manag 43(4):707–724 | es_ES |
dc.description.references | Bessou C, Basset-Mens C, Latunussa C, Vélu A, Heitz H, Vannière H, Caliman JP (2016) Partial modelling of the perennial crop cycle misleads LCA results in two contrasted case studies. Int J Life Cycle Assess 21(3):297–310 | es_ES |
dc.description.references | Boone L, De Meester S, Vandecasteele B, Muylle H, Roldán-Ruiz I, Nemecek T, Dewulf J (2016) Environmental life cycle assessment of grain maize production: an analysis of factors causing variability. Sci Total Environ 553:551–564 | es_ES |
dc.description.references | Boulard T, Raeppel C, Brun R, Lecompte F, Hayer F, Carmassi G, Gaillard G (2011) Environmental impact of greenhouse tomato production in France. Agron Sustain Dev 31(4):757–777 | es_ES |
dc.description.references | CAMACCDR (2017a) Generalitat Valenciana. Conselleriad’Agricultura, Med Ambient, Canvi Climatic i Desenvolupament Rural. Informe del Sector Agrari Valencià 2015. Available at: http://www.agroambient.gva.es/documents/162218839/163510152/ISAV2015/ccc50371-e0c8-4462-9f3a-259fac20c49e . Accessed 9 March 2017 | es_ES |
dc.description.references | CAMACCDR (2017b) Generalitat Valenciana. Conselleria d’Agricultura, Med Ambient, Canvi Climatic i Desenvolupament Rural. Informe sobre la superficie ecológica 2016 Comunitat Valenciana. Available at: http://www.agroambient.gva.es/documents/162218839/164381878/INFORME+SOBRE+LA+SUPERFICIE+ECOL%C3%93GICA+2016.pdf/065f453a-5ac8-4577-8351-84127b8b1fab . Accessed 9 March 2017 | es_ES |
dc.description.references | Canellada F, Laca A, Laca A, Díaz M (2018) Environmental impact of cheese production: a case study of a small-scale factory in southern Europe and global overview of carbon footprint. Sci Total Environ 635:167–177 | es_ES |
dc.description.references | CAPDR (2017) Junta de Andalucía. Consejería de Agricultura, Pesca y Desarrollo Rural. Observatorio de precios y mercados. Available at: http://www.juntadeandalucia.es/agriculturaypesca/observatorio/servlet/FrontController?action=SelectInformes&claseInforme=cm&tipoInforme=por_campanna&ec=subsector&subsector=647048 . Accessed 10 March 2017 | es_ES |
dc.description.references | Chen X, Corson MS (2014) Influence of emission-factor uncertainty and farm-characteristic variability in LCA estimates of environmental impacts of French dairy farms. J Clean Prod 81:150–157 | es_ES |
dc.description.references | Chernick MR (2008) Bootstrap methods: a guide for practitioners and researchers. John Wilery & Sons. Inc., Hoboken, New Jersey | es_ES |
dc.description.references | Chernick MR, LaBudde RA (2011) An introduction to bootstrap methods with applications to R. John Wiley & Sons, Hoboken, New Jersey | es_ES |
dc.description.references | Coltro L, Mourad AL, Kletecke RM, Mendonça TA, Germer SPM (2009) Assessing the environmental profile of orange production in Brazil. Int J Life Cycle Assess 14(7):656–664 | es_ES |
dc.description.references | Escobar N, Ribal J, Clemente G, Rodrigo A, Pascual A, Sanjuán N (2015) Uncertainty analysis in the environmental assessment of an integrated management system for restaurants and catering waste. Int J Life Cycle Assess 20(2):244–262 | es_ES |
dc.description.references | European Union (2008) Commission Regulation 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2008.250.01.0001.01.ENG . Accessed 15 September 2017 | es_ES |
dc.description.references | Eurostat (2018a) Recycling rates for packaging waste. Available at: https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00063&language=en . Accessed 11 November 2018 | es_ES |
dc.description.references | Eurostat (2018b) Recovery rates for packaging waste. Available at: https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00062&language=en . Accessed 11 November 2018 | es_ES |
dc.description.references | FEPEX (2017) Federación Española de Asociaciones de Productores Exportadores de Frutas, Hortalizas, Flores y Plantas vivas. EXPORTACIÓN/IMPORTACIÓN ESPAÑOLAS DE FRUTAS Y HORTALIZAS. Available at: http://www.fepex.es/datos-del-sector/exportacion-importacion-espa%C3%B1ola-frutas-hortalizas . Accessed 11 January 2017 | es_ES |
dc.description.references | Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14:91–94 | es_ES |
dc.description.references | Heidari MD, Mobli H, Omid M, Rafiee S, Marbini VJ, Elshout PM, Huijbregts MA (2017) Spatial and technological variability in the carbon footprint of durum wheat production in Iran. Int J Life Cycle Assess 22(12):1893–1900 | es_ES |
dc.description.references | Heijungs R, Huijbregts M (2004) A review of approaches to treat uncertainty in LCA. In: Pahl C, Schmidt S, Jakeman T (eds) iEMSs 2004 International Congress: complexity and integrated resources management. International Environmental Modeling and Software Society, Osnabrueck | es_ES |
dc.description.references | Henriksson PJ, Heijungs R, Dao HM, Phan LT, de Snoo GR, Guinée JB (2015) Product carbon footprints and their uncertainties in comparative decision contexts. PLoS One 10(3):e0121221 | es_ES |
dc.description.references | Henson S, Reardon T (2005) Private agri-food standards: implications for food policy and the agri-food system. Food Pol 30(3):241–253 | es_ES |
dc.description.references | Hospido A, Milà i, Canals L, McLaren S, Truninger M, Edwards-Jones G, Clift R (2009) The role of seasonality in lettuce consumption: a case study of environmental and social aspects. Int J Life Cycle Assess 14(5):381–391 | es_ES |
dc.description.references | Huijbregts MAJ (1998) Application of uncertainty and variability in LCA. Int J Life Cycle Assess 3(5):273–280 | es_ES |
dc.description.references | Iriarte A, Almeida MG, Villalobos P (2014) Carbon footprint of premium quality export bananas: case study in Ecuador, the world's largest exporter. Sci Total Environ 472:1082–1088 | es_ES |
dc.description.references | Jones AK, Jones DL, Cross P (2014) The carbon footprint of lamb: sources of variation and opportunities for mitigation. Agric Syst 123:97–107 | es_ES |
dc.description.references | Josling T (2002) The impact of food industry globalization on agricultural trade policy. In: Agricultural globalization trade and the environment. Springer, Boston, pp 309–328 | es_ES |
dc.description.references | Keyes S, Tyedmers P, Beazley K (2015) Evaluating the environmental impacts of conventional and organic apple production in Nova Scotia, Canada, through life cycle assessment. J Clean Prod 104:40–51 | es_ES |
dc.description.references | Knudsen MT, de Almeida G, Langer V, de Abreu LS, Halberg N (2011) Environmental assessment of organic juice imported to Denmark: a case study on oranges (Citrus sinensis) from Brazil. Org Agric 1:167–185 | es_ES |
dc.description.references | Lacirignola M, Blanc P, Girard R, Perez-Lopez P, Blanc I (2017) LCA of emerging technologies: addressing high uncertainty on inputs’ variability when performing global sensitivity analysis. Sci Total Environ 578:268–280 | es_ES |
dc.description.references | Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46(7):4100–4108 | es_ES |
dc.description.references | Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol 49(4):764–766 | es_ES |
dc.description.references | LineRail (2014) Boletín Fundación Valencia Port. Julio –Diciembre 2013. Available at: http://www.fundacion.valenciaport.com/Articles/Newsletter/Boletin-LinePort-LineRail/Newsletter-2014.aspx . Accessed 01 April 2018 | es_ES |
dc.description.references | Lo Giudice A, Mbohwa C, Clasadonte MT, Incrao C (2013) Environmental assessment of the citrus fruit production in Sicily using LCA. Ital J Food Sci 25(2):202 | es_ES |
dc.description.references | De Luca AI, Falcone G, Stillitano T, Strano A, Gulisano G (2014) Sustainability assessment of quality-oriented citrus growing systems in Mediterranean area. Calitatea 15(141):103 | es_ES |
dc.description.references | Luè A, Bresciani C, Colorni A, Lia F, Maras V, Radmilović Z, Anoyrkati E (2016) Future priorities for a climate-friendly transport: a European strategic research agenda toward 2030. Int J Sust Transpor 10(3):236–246 | es_ES |
dc.description.references | MAPAMA (2017) Ministerio de Agricultura, Pesca, Alimentación y Medioambiente de España. Agricultura Ecológica. Estadisticas 2015. Available at: http://www.mapama.gob.es/es/alimentacion/temas/la-agricultura-ecologica/estadisticaseco 2015 connipoymetadatos_tcm7-435957.pdf . Accessed 20 January 2018 | es_ES |
dc.description.references | Martínez-Jávega JM, Salvador A, Navarro P (2007) Adecuación del tratamiento de desverdización para minimizar alteraciones fisiológicas durante la comercialización de mandarinas. In Congreso Iberoamericano de Tecnología Postcosecha y Agroexportaciones Centro de Tecnología Postcosecha Instituto Valenciano de Investigaciones Agrarias Apartado Oficial (Vol. 46113) | es_ES |
dc.description.references | Meneses M, Pasqualino J, Castells F (2012) Environmental assessment of the milk life cycle: the effect of packaging selection and the variability of milk production data. J Environ Manag 107:76–83 | es_ES |
dc.description.references | Meneses M, Torres CM, Castells F (2016) Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain. Sci Total Environ 562:571–579 | es_ES |
dc.description.references | Nicolo BF, De Luca AI, Stillitano T, Iofrida N, Falcone G, Gulisano G (2017) Environmental and economic sustainability assessment of navel oranges from the cultivation to the packinghouse according to environmental product declarations system. Calitatea 18(158):108 | es_ES |
dc.description.references | Notarnicola B, Sala S, Anton A, McLaren SJ, Saouter E, Sonesson U (2017) The role of life cycle assessment in supporting sustainable Agri-food systems: a review of the challenges. J Clean Prod 140:399–409 | es_ES |
dc.description.references | Pardo J, Soler G, Buj A (2016) Calendario de recolección de cítricos cultivados en España. Instituto Valenciano de Investigaciones Agrarias Available at: wwwiviagvaes/variedades/ Accesed 12 April 2016 | es_ES |
dc.description.references | Pérez Neira DP, Soler Montiel MS, Delgado Cabeza MD, Reigada A (2018) Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Sci Total Environ 628:1627–1636 | es_ES |
dc.description.references | Pergola M, D'Amico M, Celano G, Palese A, Scuderi A, Di Vita G et al (2013) Sustainability evaluation of Sicily's lemon and orange production: an energy, economic and environmental analysis. J Environ Manag 128:674–682 | es_ES |
dc.description.references | Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360(6392):987–992 | es_ES |
dc.description.references | Renouf MA, Wegener MK, Pagan RJ (2010) Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. Int J Life Cycle Assess 15(9):927–937 | es_ES |
dc.description.references | Ribal J, Ramírez-Sanz C, Estruch V, Clemente G, Sanjuán N (2017) Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain). Int J Life Cycle Assess 22(4):571–586 | es_ES |
dc.description.references | Roibás L, Loiseau E, Hospido A (2017) Determination of the carbon footprint of all Galician production and consumption activities: lessons learnt and guidelines for policymakers. J Environ Manag 198:289–299 | es_ES |
dc.description.references | Röös E, Sundberg C, Hansson PA (2010) Uncertainties in the carbon footprint of food products: a case study on table potatoes. Int J Life Cycle Assess 15(5):478–488 | es_ES |
dc.description.references | Röös E, Sundberg C, Hansson PA (2011) Uncertainties in the carbon footprint of refined wheat products: a case study on Swedish pasta. Int J Life Cycle Assess 16(4):338–350 | es_ES |
dc.description.references | Sanjuan N, Ubeda L, Clemente G, Mulet A, Girona F (2005) LCA of integrated orange production in the Comunidad Valenciana (Spain). Int J Agric Res Gov Ecol (2):163–177 | es_ES |
dc.description.references | SI, PAS 2050–1:2012 (2012) Assessment of life cycle greenhouse gas emissions from horticultural products—supplementary requirements for the cradle to gate stages of GHG assessments of horticultural products undertaken in accordance with PAS 2050. British Standards Institution, London | es_ES |
dc.description.references | da Silva VP, van der Werf HM, Spies A, Soares SR (2010) Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J Environ Manag 91(9):1831–1839 | es_ES |
dc.description.references | Steinmann ZJ, Hauck M, Karuppiah R, Laurenzi IJ, Huijbregts MA (2014) A methodology for separating uncertainty and variability in the life cycle greenhouse gas emissions of coal-fueled power generation in the USA. Int J Life Cycle Assess 19(5):1146–1155 | es_ES |
dc.description.references | Van der Krogt D, Nilsson J, Host V (2007) The impact of cooperatives’ risk aversion and equity capital constraints on their inter-firm consolidation and collaboration strategies—with an empirical study of the European dairy industry. Agribusiness 23(4):453–472 | es_ES |
dc.description.references | Vinyes E, Asin L, Alegre S, Muñoz P, Boschmonart J, Gasol CM (2017) Life cycle assessment of apple and peach production, distribution and consumption in Mediterranean fruit sector. J Clean Prod 149:313–320 | es_ES |
dc.description.references | Webb J, Williams AG, Hope E, Evans D, Moorhouse E (2013) Do foods imported into the UK have a greater environmental impact than the same foods produced within the UK? Int J Life Cycle Assess 18(7):1325–1343 | es_ES |
dc.description.references | Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42(10):3508–3513 | es_ES |
dc.description.references | Weidema BP, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint. A catalyst for life cycle assessment? J Ind Ecol 12(1):3–6 | es_ES |
dc.description.references | Williams AG, Audsley E, Sandars DL (2010) Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. Int J Life Cycle Assess 15(8):855–868 | es_ES |
dc.description.references | Zaragozà JL (2016) Nueva ruta desde Valencia al norte de Europa para impulsar la exportación citrícola. Levante, 12/05/2016. Available at: https://www.levante-emv.com/economia/2016/05/12/nueva-ruta-valencia-saltarse-veto/1416515.html . Accessed 1 April 2018 | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |