- -

Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kim, Jonglack es_ES
dc.contributor.author Sarma, Bidyut B. es_ES
dc.contributor.author Andres-Marcos, Eva es_ES
dc.contributor.author Pfaender, Norbert es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Prieto González, Gonzalo es_ES
dc.date.accessioned 2020-09-24T12:30:41Z
dc.date.available 2020-09-24T12:30:41Z
dc.date.issued 2019-11-01 es_ES
dc.identifier.issn 2155-5435 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150682
dc.description.abstract [EN] Oxide-supported copper nanoparticles exhibit promising properties as catalysts for the selective hydrogenation of CO2 to methanol. Both reaction rate and selectivity depend conspicuously on the nature of the oxide support/promoter at the metal periphery. However, a major challenge is the achievement of a quantitative description of such metal/oxide promotion effects, which is an essential step toward a rational catalyst design. We investigate structure-performance relationships with a series of model catalysts consisting of Cu nanoparticles dispersed on a mesoporous gamma-Al2O3 carrier overlaid with different transition metal oxides spanning a broad range of Lewis acidity (YOx, ScOx, ZrOx, TaOx). Remarkably, the apparent activation energy (E-a) for methanol formation is found to downscale linearly with the relative Lewis acidity of coordinatively unsaturated metal surface sites (cus) exposed on the oxide support, making this single physicochemical parameter a suitable reactivity descriptor in the whole study space. In correspondence with this performance trend, in situ Fourier transform infrared spectroscopy reveals that both the ionic character and the relative reactivity of bidentate formate species, developed on the catalyst surface under reaction conditions, vary systematically with the surface Lewis acidity of the oxide support. These findings support the involvement of oxide-adsorbed bidentate formate species as reaction intermediates and point to the relative electron-accepting character of the Lewis cus on the oxide surface as the factor determining the stability of these intermediates and the overall energy barrier for the reaction. Our results contribute a unifying and quantitative description for support effects in CO2 hydrogenation to methanol on oxide-supported copper nanoparticles and provide a blueprint for a predictive description of metal-oxide promotion effects, which are ubiquitous in heterogeneous catalysis. es_ES
dc.description.sponsorship The authors are grateful to P. Bussian and Sasol for providing the alumina precursor. S. Ruthe and K. Jeske (MPI-KOFO) are acknowledged for assistance with chromatographic product quantification. J. M. Salas (ITQ) and J. P. Holgado (ICMS-CSIC, Spain) are acknowledged for contributions to the in situ FTIR and XPS experiments, respectively. This research received funding from the Max Planck Society, the Bundesministerium ffir Bildung and Forschung (project 01DG17019), the Spanish Ministry of Science, Innovation and Universities (Severo Ochoa Excellence award SEV-20160683), and the Generalitat Valenciana (Scientific Excellence of Junior Researchers, SEJI2018/011). B.S. acknowledges the Humboldt foundation for a postdoctoral fellowship. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Catalysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Copper catalysts es_ES
dc.subject CO2 recycling es_ES
dc.subject Support effects es_ES
dc.subject Interfacial catalysis es_ES
dc.subject Structure-performance relations es_ES
dc.subject In situ FTIR es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acscatal.9b02412 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BMBF//01DG17019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//SEJI%2F2018%2F011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Kim, J.; Sarma, BB.; Andres-Marcos, E.; Pfaender, N.; Concepción Heydorn, P.; Prieto González, G. (2019). Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles. ACS Catalysis. 9(11):10409-10417. https://doi.org/10.1021/acscatal.9b02412 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acscatal.9b02412 es_ES
dc.description.upvformatpinicio 10409 es_ES
dc.description.upvformatpfin 10417 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\409675 es_ES
dc.contributor.funder Max Planck Society es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem