- -

Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Román-Leshkov, Yuriy es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-09-24T12:30:45Z
dc.date.available 2020-09-24T12:30:45Z
dc.date.issued 2019-10-15 es_ES
dc.identifier.issn 0001-4842 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150684
dc.description.abstract [EN] CONSPECTUS: Zeolites are microporous crystalline materials with well-defined cavities and pores, which can be prepared under different pore topologies and chemical compositions. Their preparation is typically defined by multiple interconnected variables (e.g., reagent sources, molar ratios, aging treatments, reaction time and temperature, among others), but unfortunately their distinctive influence, particularly on the nucleation and crystallization processes, is still far from being understood. Thus, the discovery and/or optimization of specific zeolites is closely related to the exploration of the parametric space through trial-and-error methods, generally by studying the influence of each parameter individually. In the past decade, machine learning (ML) methods have rapidly evolved to address complex problems involving highly nonlinear or massively combinatorial processes that conventional approaches cannot solve. Considering the vast and interconnected multiparametric space in zeolite synthesis, coupled with our poor understanding of the mechanisms involved in their nucleation and crystallization, the use of ML is especially timely for improving zeolite synthesis. Indeed, the complex space of zeolite synthesis requires draWing inferences from incomplete and imperfect information, for which ML methods are very well-suited to replace the intuition-based approaches traditionally used to guide experimentation. In this Account, we contend that both existing and new ML approaches can provide the "missing link" needed to complete the traditional zeolite synthesis workflow used in our quest to rationalize zeolite synthesis. Within this context, we have made important efforts on developing ML tools in different critical areas, such as (1) data-mining tools to process the large amount of data generated using high-throughput platforms; (2) novel complex algorithms to predict the formation of energetically stable hypothetical zeolites and guide the synthesis of new zeolite structures; (3) new "ab initio" organic structure directing agent predictions to direct the synthesis of hypothetical or known zeolites; (4) an automated tool for nonsupervised data extraction and classification from published research articles. ML has already revolutionized many areas in materials science by enhancing our ability to map intricate behavior to process variables, especially in the absence of well-understood mechanisms. Undoubtedly, ML is a burgeoning field with many future opportunities for further breakthroughs to advance the design of molecular sieves. For this reason, this Account includes an outlook of future research directions based on current challenges and opportunities. We envision this Account will become a hallmark reference for both well-established and new researchers in the field of zeolite synthesis. es_ES
dc.description.sponsorship This work has been supported by the EU through ERC-AdG2014-671093, by the Spanish Government through SEV-20160683 and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE), and by La Caixa-Foundation through MIT -SPAIN MISTI program (LCF/PR/MIT17/11820002). Y.R.-L. thanks the DoE for funding through the Office of Basic Energy Sciences (DE-SC0016214). es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Accounts of Chemical Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Structure-Directing agents es_ES
dc.subject Artificial neural-networks es_ES
dc.subject X-Ray-Diffraction es_ES
dc.subject Hydrothermal synthesis es_ES
dc.subject Molecular-Sieve es_ES
dc.subject Combinatorial es_ES
dc.subject Design es_ES
dc.subject Methodology es_ES
dc.subject Prediction es_ES
dc.subject Frameworks es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.accounts.9b00399 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FPR%2FMIT17%2F11820002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC0016214/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Moliner Marin, M.; Román-Leshkov, Y.; Corma Canós, A. (2019). Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery. Accounts of Chemical Research. 52(10):2971-2980. https://doi.org/10.1021/acs.accounts.9b00399 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.accounts.9b00399 es_ES
dc.description.upvformatpinicio 2971 es_ES
dc.description.upvformatpfin 2980 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 10 es_ES
dc.identifier.pmid 31553162 es_ES
dc.relation.pasarela S\406602 es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem