- -

Analysis of mobile health applications for a broad spectrum of consumers: A user experience approach

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analysis of mobile health applications for a broad spectrum of consumers: A user experience approach

Show simple item record

Files in this item

dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.contributor.author de la Torre Díez, Isabel es_ES
dc.contributor.author Vicente Robledo, Javier es_ES
dc.contributor.author Robles Viejo, Montserrat es_ES
dc.contributor.author Lopez-Coronado, Miguel es_ES
dc.contributor.author Rodrigues, Joel J. es_ES
dc.date.accessioned 2020-10-04T03:31:37Z
dc.date.available 2020-10-04T03:31:37Z
dc.date.issued 2014-03 es_ES
dc.identifier.issn 1460-4582 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151036
dc.description.abstract [EN] Mobile health (m-health) apps can bring health prevention and promotion to the general population. The main purpose of this article is to analyze different m-health apps for a broad spectrum of consumers by means of three different experiences. This goal was defined following the strategic documents generated by the main prospective observatories of Information and Communications Technology for health. After a general exploration of the app markets, we analyze the entries of three specific themes focused in this article: type 2 diabetes, obesity, and breast-feeding. The user experiences reported in this study mostly cover the segments of (1) chronically monitored consumers through a Web mobile app for predicting type 2 diabetes (Diab_Alert app), (2) information seekers through a mobile app for maternity (Lactation app) and partially (3) the motivated healthy consumers through a mobile app for a dietetic monitoring and assessment (SapoFit app). These apps were developed by the authors of this work. es_ES
dc.description.sponsorship This research has been partially supported by the Spanish Social Security Administration Body (IMSERSO) under the project 85/2010, by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2011 Project es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation Imserso/85/2010 es_ES
dc.relation FCT/Pest-OE/EEI/LA0008/2011 es_ES
dc.relation.ispartof Health Informatics Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diabetes es_ES
dc.subject Health promotion es_ES
dc.subject Maternity es_ES
dc.subject Mobile health applications es_ES
dc.subject Obesity es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Analysis of mobile health applications for a broad spectrum of consumers: A user experience approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1460458213479598 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Garcia-Gomez, JM.; De La Torre Díez, I.; Vicente Robledo, J.; Robles Viejo, M.; Lopez-Coronado, M.; Rodrigues, JJ. (2014). Analysis of mobile health applications for a broad spectrum of consumers: A user experience approach. Health Informatics Journal. 20(1):74-84. https://doi.org/10.1177/1460458213479598 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1460458213479598 es_ES
dc.description.upvformatpinicio 74 es_ES
dc.description.upvformatpfin 84 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 24550566 es_ES
dc.relation.pasarela S\249139 es_ES
dc.contributor.funder Instituto de Mayores y Servicios Sociales es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Norris, A. C., Stockdale, R. S., & Sharma, S. (2009). A strategic approach to m-health. Health Informatics Journal, 15(3), 244-253. doi:10.1177/1460458209337445 es_ES
dc.description.references Wu, J.-H., Wang, S.-C., & Lin, L.-M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International Journal of Medical Informatics, 76(1), 66-77. doi:10.1016/j.ijmedinf.2006.06.006 es_ES
dc.description.references Elgazzar, K., Aboelfotoh, M., Martin, P., & Hassanein, H. S. (2012). Ubiquitous Health Monitoring Using Mobile Web Services. Procedia Computer Science, 10, 332-339. doi:10.1016/j.procs.2012.06.044 es_ES
dc.description.references Klasnja, P., & Pratt, W. (2012). Healthcare in the pocket: Mapping the space of mobile-phone health interventions. Journal of Biomedical Informatics, 45(1), 184-198. doi:10.1016/j.jbi.2011.08.017 es_ES
dc.description.references Liu, C., Zhu, Q., Holroyd, K. A., & Seng, E. K. (2011). Status and trends of mobile-health applications for iOS devices: A developer’s perspective. Journal of Systems and Software, 84(11), 2022-2033. doi:10.1016/j.jss.2011.06.049 es_ES
dc.description.references Rodrigues, J. J. P. C., Lopes, I. M. C., Silva, B. M. C., & Torre, I. de L. (2012). A new mobile ubiquitous computing application to control obesity: SapoFit. Informatics for Health and Social Care, 38(1), 37-53. doi:10.3109/17538157.2012.674586 es_ES
dc.description.references Amichai-Hamburger, Y., McKenna, K. Y. A., & Tal, S.-A. (2008). E-empowerment: Empowerment by the Internet. Computers in Human Behavior, 24(5), 1776-1789. doi:10.1016/j.chb.2008.02.002 es_ES
dc.description.references Scambler, S., Newton, P., Sinclair, A. J., & Asimakopoulou, K. (2012). Barriers and opportunities of empowerment as applied in diabetes settings: A focus on health care professionals’ experiences. Diabetes Research and Clinical Practice, 97(1), e18-e22. doi:10.1016/j.diabres.2012.03.001 es_ES
dc.description.references Alpay, L. L., Henkemans, O. B., Otten, W., Rövekamp, T. A. J. M., & Dumay, A. C. M. (2010). E-health Applications and Services for Patient Empowerment: Directions for Best Practices in The Netherlands. Telemedicine and e-Health, 16(7), 787-791. doi:10.1089/tmj.2009.0156 es_ES
dc.description.references Ahtinen, A., Mattila, E., Vaatanen, A., Hynninen, L., Salminen, J., Koskinen, E., & Laine, K. (2009). User experiences of mobile wellness applications in health promotion: User study of Wellness Diary, Mobile Coach and SelfRelax. Proceedings of the 3d International ICST Conference on Pervasive Computing Technologies for Healthcare. doi:10.4108/icst.pervasivehealth2009.6007 es_ES
dc.description.references Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311-321. doi:10.1016/j.diabres.2011.10.029 es_ES
dc.description.references Kahn, H. S. (2009). Two Risk-Scoring Systems for Predicting Incident Diabetes Mellitus in U.S. Adults Age 45 to 64 Years. Annals of Internal Medicine, 150(11), 741. doi:10.7326/0003-4819-150-11-200906020-00002 es_ES
dc.description.references Barreda-Pérez, M., de la Torre, I., López-Coronado, M., Rodrigues, J. J. P. C., & García de la Iglesia, T. (2013). Development and Evaluation of a Web-Based Tool to Estimate Type 2 Diabetes Risk: Diab_Alert. Telemedicine and e-Health, 19(2), 81-87. doi:10.1089/tmj.2012.0110 es_ES
dc.description.references Chiasson, J.-L., Josse, R. G., Gomis, R., Hanefeld, M., Karasik, A., & Laakso, M. (2002). Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. The Lancet, 359(9323), 2072-2077. doi:10.1016/s0140-6736(02)08905-5 es_ES
dc.description.references Heikes, K. E., Eddy, D. M., Arondekar, B., & Schlessinger, L. (2007). Diabetes Risk Calculator: A simple tool for detecting undiagnosed diabetes and pre-diabetes. Diabetes Care, 31(5), 1040-1045. doi:10.2337/dc07-1150 es_ES
dc.description.references Wald, N. J., Bestwick, J. P., & Morris, J. K. (2012). Body weight reduction to avoid the excess risk of type 2 diabetes. British Journal of General Practice, 62(599), e411-e414. doi:10.3399/bjgp12x649098 es_ES


This item appears in the following Collection(s)

Show simple item record