- -

An educational recommender system based on argumentation theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An educational recommender system based on argumentation theory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez, Paula es_ES
dc.contributor.author Heras, Stella es_ES
dc.contributor.author Palanca Cámara, Javier es_ES
dc.contributor.author Poveda, Jhon M. es_ES
dc.contributor.author Duque, Néstor es_ES
dc.contributor.author Julian Inglada, Vicente Javier es_ES
dc.date.accessioned 2020-10-04T03:32:12Z
dc.date.available 2020-10-04T03:32:12Z
dc.date.issued 2017-03-27 es_ES
dc.identifier.issn 0921-7126 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151049
dc.description You are free to use the manuscript version of your article for internal, educational or other purposes of your own institution, company or funding agency es_ES
dc.description.abstract [EN] Recommender Systems aim to provide users with search results close to their needs, making predictions of their preferences. In virtual learning environments, Educational Recommender Systems deliver learning objects according to the student's characteristics, preferences and learning needs. A learning object is an educational content unit, which once found and retrieved may assist students in their learning process. In previous work, authors have designed and evaluated several recommendation techniques for delivering the most appropriate learning object for each specific student. Also, they have combined these techniques by using hybridization methods, improving the performance of isolated techniques. However, traditional hybridization methods fail when the learning objects delivered by each recommendation technique are very different from those selected by the other techniques (there is no agreement about the best learning object to recommend). In this paper, we present a new recommendation method based on argumentation theory that is able to combine content-based, collaborative and knowledge-based recommendation techniques, or to act as a new recommendation technique. This method provides the students with those objects for which the system is able to generate more arguments to justify their suitability. It has been implemented and tested in the Federation of Learning Objects Repositories of Colombia, getting promising results. es_ES
dc.description.sponsorship This work was partially developed with the aid of the doctoral grant offered to Paula A. Rodriguez by 'Programa Nacional de Formacion de Investigadores - COLCIENCIAS', Colombia and partially funded by the COLCIENCIAS project 1119-569-34172 from the Universidad Nacional de Colombia. It was also supported by the by the projects TIN2015-65515-C4-1-R and TIN2014-55206-R of the Spanish government and by the grant program for the recruitment of doctors for the Spanish system of science and technology (PAID-10-14) of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof AI Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Educational recommender systems es_ES
dc.subject Argumentation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification BIBLIOTECONOMIA Y DOCUMENTACION es_ES
dc.title An educational recommender system based on argumentation theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3233/AIC-170724 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-14/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAL//1119-569-34172/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-55206-R/ES/PRIVACIDAD EN ENTORNOS SOCIALES EDUCATIVOS DURANTE LA INFANCIA Y LA ADOLESCENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-65515-C4-1-R/ES/ARQUITECTURA PERSUASIVA PARA EL USO SOSTENIBLE E INTELIGENTE DE VEHICULOS EN FLOTAS URBANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Rodríguez, P.; Heras, S.; Palanca Cámara, J.; Poveda, JM.; Duque, N.; Julian Inglada, VJ. (2017). An educational recommender system based on argumentation theory. AI Communications. 30(1):19-36. https://doi.org/10.3233/AIC-170724 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3233/AIC-170724 es_ES
dc.description.upvformatpinicio 19 es_ES
dc.description.upvformatpfin 36 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\333987 es_ES
dc.contributor.funder Universidad Nacional de Colombia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Briguez, C. E., Budán, M. C. D., Deagustini, C. A. D., Maguitman, A. G., Capobianco, M., & Simari, G. R. (2014). Argument-based mixed recommenders and their application to movie suggestion. Expert Systems with Applications, 41(14), 6467-6482. doi:10.1016/j.eswa.2014.03.046 es_ES
dc.description.references BRIGUEZ, C. E., CAPOBIANCO, M., & MAGUITMAN, A. G. (2013). A THEORETICAL FRAMEWORK FOR TRUST-BASED NEWS RECOMMENDER SYSTEMS AND ITS IMPLEMENTATION USING DEFEASIBLE ARGUMENTATION. International Journal on Artificial Intelligence Tools, 22(04), 1350021. doi:10.1142/s0218213013500218 es_ES
dc.description.references R. Burke, Hybrid recommender systems: Survey and experiments, User Modelingand User-Adapted Interaction (2002). es_ES
dc.description.references Chesñevar, C., Maguitman, A. G., & González, M. P. (2009). Empowering Recommendation Technologies Through Argumentation. Argumentation in Artificial Intelligence, 403-422. doi:10.1007/978-0-387-98197-0_20 es_ES
dc.description.references Drachsler, H., Verbert, K., Santos, O. C., & Manouselis, N. (2015). Panorama of Recommender Systems to Support Learning. Recommender Systems Handbook, 421-451. doi:10.1007/978-1-4899-7637-6_12 es_ES
dc.description.references N.D. Duque, D.A. Ovalle and J. Moreno, Objetos de aprendizaje, repositorios y federaciones... conocimiento para todos. Universidad Nacional de Colombia, 2015. es_ES
dc.description.references Dwivedi, P., & Bharadwaj, K. K. (2013). e-Learning recommender system for a group of learners based on the unified learner profile approach. Expert Systems, 32(2), 264-276. doi:10.1111/exsy.12061 es_ES
dc.description.references GARCÍA, A. J., & SIMARI, G. R. (2004). Defeasible logic programming: an argumentative approach. Theory and Practice of Logic Programming, 4(1+2), 95-138. doi:10.1017/s1471068403001674 es_ES
dc.description.references Gunawardana, A., & Shani, G. (2015). Evaluating Recommender Systems. Recommender Systems Handbook, 265-308. doi:10.1007/978-1-4899-7637-6_8 es_ES
dc.description.references Heras, S., Botti, V., & Julián, V. (2012). Argument-based agreements in agent societies. Neurocomputing, 75(1), 156-162. doi:10.1016/j.neucom.2011.02.022 es_ES
dc.description.references Heras, S., Rebollo, M., & Julián, V. (s. f.). A Dialogue Game Protocol for Recommendation in Social Networks. Hybrid Artificial Intelligence Systems, 515-522. doi:10.1007/978-3-540-87656-4_64 es_ES
dc.description.references P.A. Kirschner, S.J. Buckingham-Shum and C.S. Carr, Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making, Springer Science & Business Media, 2012. es_ES
dc.description.references Klašnja-Milićević, A., Ivanović, M., & Nanopoulos, A. (2015). Recommender systems in e-learning environments: a survey of the state-of-the-art and possible extensions. Artificial Intelligence Review, 44(4), 571-604. doi:10.1007/s10462-015-9440-z es_ES
dc.description.references Learning Technology Standards Committee, IEEE Standard for Learning Object Metadata, Institute of Electrical and Electronics Engineers, New York, 2002. es_ES
dc.description.references Leite, W. L., Svinicki, M., & Shi, Y. (2009). Attempted Validation of the Scores of the VARK: Learning Styles Inventory With Multitrait–Multimethod Confirmatory Factor Analysis Models. Educational and Psychological Measurement, 70(2), 323-339. doi:10.1177/0013164409344507 es_ES
dc.description.references Li, H., Oren, N., & Norman, T. J. (2012). Probabilistic Argumentation Frameworks. Lecture Notes in Computer Science, 1-16. doi:10.1007/978-3-642-29184-5_1 es_ES
dc.description.references CACM Staff. (2009). Recommendation algorithms, online privacy, and more. Communications of the ACM, 52(5), 10-11. doi:10.1145/1506409.1506434 es_ES
dc.description.references Ossowski, S., Sierra, C., & Botti, V. (2012). Agreement Technologies: A Computing Perspective. Agreement Technologies, 3-16. doi:10.1007/978-94-007-5583-3_1 es_ES
dc.description.references Palanca, J., Heras, S., Jorge, J., & Julian, V. (2015). Towards persuasive social recommendation. ACM SIGAPP Applied Computing Review, 15(2), 41-49. doi:10.1145/2815169.2815173 es_ES
dc.description.references Recio-García, J. A., Quijano, L., & Díaz-Agudo, B. (2013). Including social factors in an argumentative model for Group Decision Support Systems. Decision Support Systems, 56, 48-55. doi:10.1016/j.dss.2013.05.007 es_ES
dc.description.references Rodríguez, P., Duque, N., & Ovalle, D. A. (2015). Multi-agent System for Knowledge-Based Recommendation of Learning Objects Using Metadata Clustering. Communications in Computer and Information Science, 356-364. doi:10.1007/978-3-319-19033-4_31 es_ES
dc.description.references Rodríguez, P. A., Ovalle, D. A., & Duque, N. D. (2015). A Student-Centered Hybrid Recommender System to Provide Relevant Learning Objects from Repositories. Learning and Collaboration Technologies, 291-300. doi:10.1007/978-3-319-20609-7_28 es_ES
dc.description.references M. Salehi, M. Pourzaferani and S.A. Razavi, Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model, Egyptian Informatics Journal (2013). es_ES
dc.description.references Sikka, R., Dhankhar, A., & Rana, C. (2012). A Survey Paper on E-Learning Recommender System. International Journal of Computer Applications, 47(9), 27-30. doi:10.5120/7218-0024 es_ES
dc.description.references Sinha, R., & Swearingen, K. (2002). The role of transparency in recommender systems. CHI ’02 extended abstracts on Human factors in computing systems - CHI ’02. doi:10.1145/506443.506619 es_ES
dc.description.references Van de Sompel, H., Chute, R., & Hochstenbach, P. (2008). The aDORe federation architecture: digital repositories at scale. International Journal on Digital Libraries, 9(2), 83-100. doi:10.1007/s00799-008-0048-7 es_ES
dc.description.references Vekariya, V., & Kulkarni, G. R. (2012). Notice of Violation of IEEE Publication Principles - Hybrid recommender systems: Survey and experiments. 2012 Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP). doi:10.1109/dictap.2012.6215409 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem