Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez, Paula | es_ES |
dc.contributor.author | Heras, Stella | es_ES |
dc.contributor.author | Palanca Cámara, Javier | es_ES |
dc.contributor.author | Poveda, Jhon M. | es_ES |
dc.contributor.author | Duque, Néstor | es_ES |
dc.contributor.author | Julian Inglada, Vicente Javier | es_ES |
dc.date.accessioned | 2020-10-04T03:32:12Z | |
dc.date.available | 2020-10-04T03:32:12Z | |
dc.date.issued | 2017-03-27 | es_ES |
dc.identifier.issn | 0921-7126 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151049 | |
dc.description | You are free to use the manuscript version of your article for internal, educational or other purposes of your own institution, company or funding agency | es_ES |
dc.description.abstract | [EN] Recommender Systems aim to provide users with search results close to their needs, making predictions of their preferences. In virtual learning environments, Educational Recommender Systems deliver learning objects according to the student's characteristics, preferences and learning needs. A learning object is an educational content unit, which once found and retrieved may assist students in their learning process. In previous work, authors have designed and evaluated several recommendation techniques for delivering the most appropriate learning object for each specific student. Also, they have combined these techniques by using hybridization methods, improving the performance of isolated techniques. However, traditional hybridization methods fail when the learning objects delivered by each recommendation technique are very different from those selected by the other techniques (there is no agreement about the best learning object to recommend). In this paper, we present a new recommendation method based on argumentation theory that is able to combine content-based, collaborative and knowledge-based recommendation techniques, or to act as a new recommendation technique. This method provides the students with those objects for which the system is able to generate more arguments to justify their suitability. It has been implemented and tested in the Federation of Learning Objects Repositories of Colombia, getting promising results. | es_ES |
dc.description.sponsorship | This work was partially developed with the aid of the doctoral grant offered to Paula A. Rodriguez by 'Programa Nacional de Formacion de Investigadores - COLCIENCIAS', Colombia and partially funded by the COLCIENCIAS project 1119-569-34172 from the Universidad Nacional de Colombia. It was also supported by the by the projects TIN2015-65515-C4-1-R and TIN2014-55206-R of the Spanish government and by the grant program for the recruitment of doctors for the Spanish system of science and technology (PAID-10-14) of the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOS Press | es_ES |
dc.relation.ispartof | AI Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Educational recommender systems | es_ES |
dc.subject | Argumentation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | BIBLIOTECONOMIA Y DOCUMENTACION | es_ES |
dc.title | An educational recommender system based on argumentation theory | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3233/AIC-170724 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-14/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAL//1119-569-34172/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-55206-R/ES/PRIVACIDAD EN ENTORNOS SOCIALES EDUCATIVOS DURANTE LA INFANCIA Y LA ADOLESCENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-65515-C4-1-R/ES/ARQUITECTURA PERSUASIVA PARA EL USO SOSTENIBLE E INTELIGENTE DE VEHICULOS EN FLOTAS URBANAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Rodríguez, P.; Heras, S.; Palanca Cámara, J.; Poveda, JM.; Duque, N.; Julian Inglada, VJ. (2017). An educational recommender system based on argumentation theory. AI Communications. 30(1):19-36. https://doi.org/10.3233/AIC-170724 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3233/AIC-170724 | es_ES |
dc.description.upvformatpinicio | 19 | es_ES |
dc.description.upvformatpfin | 36 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\333987 | es_ES |
dc.contributor.funder | Universidad Nacional de Colombia | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Briguez, C. E., Budán, M. C. D., Deagustini, C. A. D., Maguitman, A. G., Capobianco, M., & Simari, G. R. (2014). Argument-based mixed recommenders and their application to movie suggestion. Expert Systems with Applications, 41(14), 6467-6482. doi:10.1016/j.eswa.2014.03.046 | es_ES |
dc.description.references | BRIGUEZ, C. E., CAPOBIANCO, M., & MAGUITMAN, A. G. (2013). A THEORETICAL FRAMEWORK FOR TRUST-BASED NEWS RECOMMENDER SYSTEMS AND ITS IMPLEMENTATION USING DEFEASIBLE ARGUMENTATION. International Journal on Artificial Intelligence Tools, 22(04), 1350021. doi:10.1142/s0218213013500218 | es_ES |
dc.description.references | R. Burke, Hybrid recommender systems: Survey and experiments, User Modelingand User-Adapted Interaction (2002). | es_ES |
dc.description.references | Chesñevar, C., Maguitman, A. G., & González, M. P. (2009). Empowering Recommendation Technologies Through Argumentation. Argumentation in Artificial Intelligence, 403-422. doi:10.1007/978-0-387-98197-0_20 | es_ES |
dc.description.references | Drachsler, H., Verbert, K., Santos, O. C., & Manouselis, N. (2015). Panorama of Recommender Systems to Support Learning. Recommender Systems Handbook, 421-451. doi:10.1007/978-1-4899-7637-6_12 | es_ES |
dc.description.references | N.D. Duque, D.A. Ovalle and J. Moreno, Objetos de aprendizaje, repositorios y federaciones... conocimiento para todos. Universidad Nacional de Colombia, 2015. | es_ES |
dc.description.references | Dwivedi, P., & Bharadwaj, K. K. (2013). e-Learning recommender system for a group of learners based on the unified learner profile approach. Expert Systems, 32(2), 264-276. doi:10.1111/exsy.12061 | es_ES |
dc.description.references | GARCÍA, A. J., & SIMARI, G. R. (2004). Defeasible logic programming: an argumentative approach. Theory and Practice of Logic Programming, 4(1+2), 95-138. doi:10.1017/s1471068403001674 | es_ES |
dc.description.references | Gunawardana, A., & Shani, G. (2015). Evaluating Recommender Systems. Recommender Systems Handbook, 265-308. doi:10.1007/978-1-4899-7637-6_8 | es_ES |
dc.description.references | Heras, S., Botti, V., & Julián, V. (2012). Argument-based agreements in agent societies. Neurocomputing, 75(1), 156-162. doi:10.1016/j.neucom.2011.02.022 | es_ES |
dc.description.references | Heras, S., Rebollo, M., & Julián, V. (s. f.). A Dialogue Game Protocol for Recommendation in Social Networks. Hybrid Artificial Intelligence Systems, 515-522. doi:10.1007/978-3-540-87656-4_64 | es_ES |
dc.description.references | P.A. Kirschner, S.J. Buckingham-Shum and C.S. Carr, Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making, Springer Science & Business Media, 2012. | es_ES |
dc.description.references | Klašnja-Milićević, A., Ivanović, M., & Nanopoulos, A. (2015). Recommender systems in e-learning environments: a survey of the state-of-the-art and possible extensions. Artificial Intelligence Review, 44(4), 571-604. doi:10.1007/s10462-015-9440-z | es_ES |
dc.description.references | Learning Technology Standards Committee, IEEE Standard for Learning Object Metadata, Institute of Electrical and Electronics Engineers, New York, 2002. | es_ES |
dc.description.references | Leite, W. L., Svinicki, M., & Shi, Y. (2009). Attempted Validation of the Scores of the VARK: Learning Styles Inventory With Multitrait–Multimethod Confirmatory Factor Analysis Models. Educational and Psychological Measurement, 70(2), 323-339. doi:10.1177/0013164409344507 | es_ES |
dc.description.references | Li, H., Oren, N., & Norman, T. J. (2012). Probabilistic Argumentation Frameworks. Lecture Notes in Computer Science, 1-16. doi:10.1007/978-3-642-29184-5_1 | es_ES |
dc.description.references | CACM Staff. (2009). Recommendation algorithms, online privacy, and more. Communications of the ACM, 52(5), 10-11. doi:10.1145/1506409.1506434 | es_ES |
dc.description.references | Ossowski, S., Sierra, C., & Botti, V. (2012). Agreement Technologies: A Computing Perspective. Agreement Technologies, 3-16. doi:10.1007/978-94-007-5583-3_1 | es_ES |
dc.description.references | Palanca, J., Heras, S., Jorge, J., & Julian, V. (2015). Towards persuasive social recommendation. ACM SIGAPP Applied Computing Review, 15(2), 41-49. doi:10.1145/2815169.2815173 | es_ES |
dc.description.references | Recio-García, J. A., Quijano, L., & Díaz-Agudo, B. (2013). Including social factors in an argumentative model for Group Decision Support Systems. Decision Support Systems, 56, 48-55. doi:10.1016/j.dss.2013.05.007 | es_ES |
dc.description.references | Rodríguez, P., Duque, N., & Ovalle, D. A. (2015). Multi-agent System for Knowledge-Based Recommendation of Learning Objects Using Metadata Clustering. Communications in Computer and Information Science, 356-364. doi:10.1007/978-3-319-19033-4_31 | es_ES |
dc.description.references | Rodríguez, P. A., Ovalle, D. A., & Duque, N. D. (2015). A Student-Centered Hybrid Recommender System to Provide Relevant Learning Objects from Repositories. Learning and Collaboration Technologies, 291-300. doi:10.1007/978-3-319-20609-7_28 | es_ES |
dc.description.references | M. Salehi, M. Pourzaferani and S.A. Razavi, Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model, Egyptian Informatics Journal (2013). | es_ES |
dc.description.references | Sikka, R., Dhankhar, A., & Rana, C. (2012). A Survey Paper on E-Learning Recommender System. International Journal of Computer Applications, 47(9), 27-30. doi:10.5120/7218-0024 | es_ES |
dc.description.references | Sinha, R., & Swearingen, K. (2002). The role of transparency in recommender systems. CHI ’02 extended abstracts on Human factors in computing systems - CHI ’02. doi:10.1145/506443.506619 | es_ES |
dc.description.references | Van de Sompel, H., Chute, R., & Hochstenbach, P. (2008). The aDORe federation architecture: digital repositories at scale. International Journal on Digital Libraries, 9(2), 83-100. doi:10.1007/s00799-008-0048-7 | es_ES |
dc.description.references | Vekariya, V., & Kulkarni, G. R. (2012). Notice of Violation of IEEE Publication Principles - Hybrid recommender systems: Survey and experiments. 2012 Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP). doi:10.1109/dictap.2012.6215409 | es_ES |