- -

Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hamza, Rim es_ES
dc.contributor.author Pérez-Hedo, Meritxell es_ES
dc.contributor.author Urbaneja, Alberto es_ES
dc.contributor.author Rambla Nebot, Jose Luis es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author Gaddour, Kamel es_ES
dc.contributor.author BELTRAN PORTER, JOSE PIO es_ES
dc.contributor.author Cañas Clemente, Luís Antonio es_ES
dc.date.accessioned 2020-10-05T06:46:59Z
dc.date.available 2020-10-05T06:46:59Z
dc.date.issued 2018-01-25 es_ES
dc.identifier.issn 1471-2229 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151078
dc.description.abstract [EN] Background: For as long as 350 million years, plants and insects have coexisted and developed a set of relationships which affect both organisms at different levels. Plants have evolved various morphological and biochemical adaptations to cope with herbivores attacks. However, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) has become the major pest threatening tomato crops worldwide and without the appropriated management it can cause production losses between 80 to 100%. Results: The aim of this study was to investigate the in vivo effect of a serine proteinase inhibitor (BTI-CMe) and a cysteine proteinase inhibitor (Hv-CPI2) from barley on this insect and to examine the effect their expression has on tomato defensive response. We found that larvae fed on the double transgenic plants showed a notable reduction in weight. Moreover, only 56% of the larvae reached the adult stage. The emerged adults showed wings deformities and reduced fertility. We also investigated the effect of proteinase inhibitors ingestion on the insect digestive enzymes. Our results showed a decrease in larval trypsin activity. Transgenes expression had no harmful effect on Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae), a predator of Tuta absoluta, despite transgenic tomato plants attracted the mirid. We also found that barley cystatin expression promoted plant defense by inducing the expression of the tomato endogenous wound inducible Proteinase inhibitor 2 (Pin2) gene, increasing the production of glandular trichomes and altering the emission of volatile organic compounds. Conclusion: Our results demonstrate the usefulness of the co-expression of different proteinase inhibitors for the enhancement of plant resistance to Tuta absoluta. es_ES
dc.description.sponsorship This work was partly supported by grants BIO2013-40747-R and AGL2014-55616-C3 from the Spanish Ministry of Economy and Competitiveness (MINECO) es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Proteinase inhibitors es_ES
dc.subject Tuta absoluta es_ES
dc.subject Enhanced resistance es_ES
dc.subject Induced plant defense es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12870-018-1240-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2013-40747-R/ES/CARACTERIZACION DE NUEVOS GENES QUE CONTROLAN LA FRUCTIFICACION EN TOMATE: DESARROLLO DE APLICACIONES BIOTECNOLOGICAS ENFOCADAS A LA MEJORA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55616-C3-1-R/ES/MEJORA DE LA RESILIENCIA DEL CULTIVO MEDIANTE EL AUMENTO DE LA RESPUESTA DE DEFENSA DE LA PLANTA Y ADAPTACION AL CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Hamza, R.; Pérez-Hedo, M.; Urbaneja, A.; Rambla Nebot, JL.; Granell Richart, A.; Gaddour, K.; Beltran Porter, JP.... (2018). Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta. BMC Plant Biology. 18. https://doi.org/10.1186/s12870-018-1240-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12870-018-1240-6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.identifier.pmid 29370757 es_ES
dc.identifier.pmcid PMC5785808 es_ES
dc.relation.pasarela S\341243 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Oerke EC. Crop losses to pests. J Agric Sci. 2005;144(01):31. es_ES
dc.description.references Jouanin L, Bonadé-Bottino M, Girard C, Morrot G, Giband M. Transgenic plants for insect resistance. Plant Sci. 1998;131(1):1–11. es_ES
dc.description.references Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, et al. Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res. 2003;12(6):671–81. es_ES
dc.description.references Koiwa H, Bressan RA, Hasegawa PM. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 1997;2(10):379–84. es_ES
dc.description.references Ryan CA. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol. 1990;28(1):425–49. es_ES
dc.description.references Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol. 2005;57(2):189–202. es_ES
dc.description.references Quilis J, López-García B, Meynard D, Guiderdoni E, San Segundo B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J. 2014;12(3):367–77. es_ES
dc.description.references Smigocki AC, Ivic-Haymes S, Li H, Savic J. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene. PLoS One. 2013;8(2):e57303. es_ES
dc.description.references Mazumdar-Leighton S, Broadway RM. Transcriptional induction of diverse midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochem Mol Biol. 2001;31(6–7):645–57. es_ES
dc.description.references Oppert B, Morgan TD, Hartzer K, Kramer KJ. Compensatory proteolytic responses to dietary proteinase inhibitors in the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2005;140(1):53–8. es_ES
dc.description.references Broadway RM. Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. J Insect Physiol. 1997;43(9):855–74. es_ES
dc.description.references Zhu-Salzman K, Koiwa H, Salzman R, Shade R, Ahn JE. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol Biol. 2003;12(2):135–45. es_ES
dc.description.references Oppert B, Morgan TD, Hartzer K, Lenarcic B, Galesa K, Brzin J, Turk V, Yoza K, Ohtsubo K, Kramer KJ. Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comparative biochemistry and physiology Toxicology & pharmacology : CBP. 2003;134(4):481–90. es_ES
dc.description.references Duan X, Li X, Xue Q, Abo-El-Saad M, Xu D, Wu R. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol. 1996;14(4):494–8. es_ES
dc.description.references Pompermayer P, Lopes AR, Terra WR, Parra JRP, Falco MC, Silva-Filho MC. Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomologia Experimentalis et Applicata. 2001;99(1):79–85. es_ES
dc.description.references Alfonso-Rubí J, Ortego F, Castañera P, Carbonero P, Díaz I. Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res. 2003;12(1):23–31. es_ES
dc.description.references Altpeter F, Diaz I, Mc Auslane H, Gaddour K, Carbonero P, Vasil IK. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed. 1999;5(1):53–63. es_ES
dc.description.references Martinez M, Cambra I, Carrillo L, Diaz-Mendoza M, Diaz I. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol. 2009;151(3):1531–45. es_ES
dc.description.references FAOSTAT: Food and Organization of the United Nations, statistics division. 2017. es_ES
dc.description.references Mueller LA, Lankhorst RK, Tanksley SD, Giovannoni JJ, White R, Vrebalov J, Fei Z, van Eck J, Buels R, Mills AA, et al. A snapshot of the emerging tomato genome sequence. The Plant Genome. 2009;2(1):78–92. es_ES
dc.description.references Ellul P, Garcia-Sogo B, Pineda B, Rios G, Roig L, Moreno V. The ploidy level of transgenic plants in agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. mill.) is genotype and procedure dependent. Theor Appl Genet. 2003;106(2):231–8. es_ES
dc.description.references Pino LE, Lombardi-Crestana S, Azevedo MS, Scotton DC, Borgo L, Quecini V, Figueira A, Peres LE. The Rg1 allele as a valuable tool for genetic transformation of the tomato'Micro-Tom'model system. Plant Methods. 2010;6(1):23. es_ES
dc.description.references Sharma MK, Solanke AU, Jani D, Singh Y, Sharma AK. A simple and efficient agrobacterium-mediated procedure for transformation of tomato. J Biosci. 2009;34(3):423–33. es_ES
dc.description.references van Eck J, Kirk DD, Walmsley AM. Tomato (Lycopersicum esculentum). Agrobacterium Protocols. 2006:459–74. es_ES
dc.description.references Dan Y, Yan H, Munyikwa T, Dong J, Zhang Y, Armstrong CL. MicroTom—a high-throughput model transformation system for functional genomics. Plant Cell Rep. 2006;25(5):432–41. es_ES
dc.description.references Pearce G, Strydom D, Johnson S, Ryan CA. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 1991;253(5022):895–9. es_ES
dc.description.references Farmer EE, Ryan CA. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci. 1990;87(19):7713–6. es_ES
dc.description.references Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol. 2014;166(1):396–410. es_ES
dc.description.references Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, DeBlasio S, Erb M, Robert CA, Vaughn KA. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Plant J. 2013;74(1):59–73. es_ES
dc.description.references Boughton AJ, Hoover K, Felton GW. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol. 2005;31(9):2211–6. es_ES
dc.description.references Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell. 2004;16(1):126–43. es_ES
dc.description.references Peiffer M, Tooker JF, Luthe DS, Felton GW. Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol. 2009;184(3):644–56. es_ES
dc.description.references Bryant J, Green TR, Gurusaddaiah T, Ryan CA. Proteinase inhibitor II from potatoes: isolation and characterization of its protomer components. Biochemistry. 1976;15(16):3418–24. es_ES
dc.description.references Johnson R, Narvaez J, An G, Ryan C. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci. 1989;86(24):9871–5. es_ES
dc.description.references Klopfenstein NB, Allen KK, Avila FJ, Heuchelin SA, Martinez J, Carman RC, Hall RB, Hart ER, McNabb HS. Proteinase inhibitor II gene in transgenic poplar: chemical and biological assays. Biomass Bioenergy. 1997;12(4):299–311. es_ES
dc.description.references Dicke M, Takabayashi J, Posthumus MA, Schütte C, Krips OE. Plant—Phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Exp Appl Acarol. 1998;22(6):311–33. es_ES
dc.description.references Turlings T, Loughrin JH, Mccall PJ, Röse U, Lewis WJ, Tumlinson JH. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci. 1995;92(10):4169–74. es_ES
dc.description.references Levin DA. The role of trichomes in plant defense. Q Rev Biol. 1973;48(1, Part 1):3–15. es_ES
dc.description.references Traw BM, Dawson TE. Differential induction of trichomes by three herbivores of black mustard. Oecologia. 2002;131(4):526–32. es_ES
dc.description.references Handley R, Ekbom B, Ågren J. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology. 2005;30(3):284–92. es_ES
dc.description.references Valverde P, Fornoni J, NÚÑez-Farfán J. Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. J Evol Biol. 2001;14(3):424–32. es_ES
dc.description.references Elle E, Hare J. Environmentally induced variation in floral traits affects the mating system in Datura wrightii. Funct Ecol. 2002;16(1):79–88. es_ES
dc.description.references Agrawal AA. Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology. 2000;81(7):1804–13. es_ES
dc.description.references Dalin P, Björkman C. Adult beetle grazing induces willow trichome defence against subsequent larval feeding. Oecologia. 2003;134(1):112–8. es_ES
dc.description.references Campos MR, Biondi A, Adiga A, Guedes RN, Desneux N. From the western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci. 2017:1–10. es_ES
dc.description.references Desneux N, Wajnberg E, Wyckhuys KA, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci. 2010;83(3):197–215. es_ES
dc.description.references Urbaneja A, Montón H, Mollá O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J Appl Entomol. 2009;133(4):292–6. es_ES
dc.description.references Pérez-Hedo M, Urbaneja A. Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci. 2015;88(1):65–73. es_ES
dc.description.references Hewitt E. The composition of the nutrient solution. Sand and water culture methods used in the study of plant Nutrition. 1966:187–246. es_ES
dc.description.references Karimi M, Inzé D, Depicker A. GATEWAY™ vectors for agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7(5):193–5. es_ES
dc.description.references Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J. 2011;67(4):701–14. es_ES
dc.description.references Vargas C. Observations on the bionomics and natural enemies of the tomato moth, Gnorimoschema absoluta (Meyrick)(Lep. Gelechiidae). Idesia. 1970;1:75–110. es_ES
dc.description.references Mollá O, Biondi A, Alonso-Valiente M, Urbaneja A. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl. 2014;59(2):175–83. es_ES
dc.description.references Abbot C. Solar variation and the weather. Science (New York, NY). 1925;62(1605):307. es_ES
dc.description.references Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54. es_ES
dc.description.references Bouagga S, Urbaneja A, Rambla JL, Granell A, Pérez-Hedo M. Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. J Pest Sci. 2017:1–10. es_ES
dc.description.references Hilder VA, Gatehouse AM, Sheerman SE, Barker RF, Boulter D. A novel mechanism of insect resistance engineered into tobacco. Nature. 1987;330(6144):160–3. es_ES
dc.description.references Saikia K, Kalita J, Saikia PK. Biology and life cycle generations of common crow–Euploea core core Cramer (Lepidoptera: Danainae) on Hemidesmus indica host plant. Int J NeBIO. 2010;1(3):28–37. es_ES
dc.description.references Srinivasan A, Giri AP, Gupta VS. Structural and functional diversities in lepidopteran serine proteases. Cellular & molecular biology letters. 2006;11(1):132. es_ES
dc.description.references Tamhane VA, Chougule NP, Giri AP, Dixit AR, Sainani MN, Gupta VS. In vivo and in vitro effect of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochimica et Biophysica Acta (BBA)-General Subjects. 2005;1722(2):156–67. es_ES
dc.description.references Telang M, Srinivasan A, Patankar A, Harsulkar A, Joshi V, Damle A, Deshpande V, Sainani M, Ranjekar P, Gupta G. Bitter gourd proteinase inhibitors: potential growth inhibitors of Helicoverpa armigera and Spodoptera litura. Phytochemistry. 2003;63(6):643–52. es_ES
dc.description.references Damle MS, Giri AP, Sainani MN, Gupta VS. Higher accumulation of proteinase inhibitors in flowers than leaves and fruits as a possible basis for differential feeding preference of Helicoverpa armigera on tomato (Lycopersicon esculentum mill, cv. Dhanashree). Phytochemistry. 2005;66(22):2659–67. es_ES
dc.description.references De Leo F, Bonadé-Bottino MA, Ceci LR, Gallerani R, Jouanin L. Opposite effects on spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol. 1998;118(3):997–1004. es_ES
dc.description.references Rahbé Y, Ferrasson E, Rabesona H, Quillien L. Toxicity to the pea aphid Acyrthosiphon pisum of anti-chymotrypsin isoforms and fragments of Bowman–Birk protease inhibitors from pea seeds. Insect Biochem Mol Biol. 2003;33(3):299–306. es_ES
dc.description.references Luo M, Ding L-W, Ge Z-J, Wang Z-Y, Hu B-L, Yang X-B, Sun Q-Y, Xu Z-F. The characterization of SaPIN2b, a plant trichome-localized proteinase inhibitor from Solanum americanum. Int J Mol Sci. 2012;13(11):15162–76. es_ES
dc.description.references Dalin P, Ågren J, Björkman C, Huttunen P, Kärkkäinen K. Leaf trichome formation and plant resistance to herbivory. In: Dordrecht SA, editor. Induced plant resistance to herbivory. Netherlands: Springer; 2008. p. 89–105. es_ES
dc.description.references Gonzáles WL, Negritto MA, Suárez LH, Gianoli E. Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecol. 2008;33(1):128–32. es_ES
dc.description.references Luo M, Wang Z, Li H, Xia K-F, Cai Y, Xu Z-F. Overexpression of a weed (Solanum americanum) proteinase inhibitor in transgenic tobacco results in increased glandular trichome density and enhanced resistance to Helicoverpa armigera and Spodoptera litura. Int J Mol Sci. 2009;10(4):1896–910. es_ES
dc.description.references Björkman C, Dalin P, Ahrné K. Leaf trichome responses to herbivory in willows: induction, relaxation and costs. New Phytol. 2008;179(1):176–84. es_ES
dc.description.references Duffey S. Plant glandular trichomes: their partial role in defence against insects. Insects and the plant surface. London: Edward Arnold; 1986. p. 151–72. es_ES
dc.description.references James DG. Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol. 2005;31(3):481–95. es_ES
dc.description.references Naselli M, Zappalà L, Gugliuzzo A, Garzia GT, Biondi A, Rapisarda C, Cincotta F, Condurso C, Verzera A, Siscaro G. Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod Plant Interact. 2017;11(2):121–31. es_ES
dc.description.references Tholl D. Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering and Biotechnology. 2015;148:63-106. es_ES
dc.description.references Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci. 2000;97(24):13172–7. es_ES
dc.description.references Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198(1):16–32. es_ES
dc.description.references Razal RA, Ellis S, Singh S, Lewis NG, Towers GHN. Nitrogen recycling in phenylpropanoid metabolism. Phytochemistry. 1996;41(1):31–5. es_ES
dc.description.references Effmert U, Große J, Röse US, Ehrig F, Kägi R, Piechulla B. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Am J Bot. 2005;92(1):2–12. es_ES
dc.description.references Guterman I, Masci T, Chen X, Negre F, Pichersky E, Dudareva N, Weiss D, Vainstein A. Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol Biol. 2006;60(4):555–63. es_ES
dc.description.references Vogel JT, Tan B-C, McCarty DR, Klee HJ. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem. 2008;283(17):11364–73. es_ES
dc.description.references Colquhoun TA, Kim JY, Wedde AE, Levin LA, Schmitt KC, Schuurink RC, Clark DG. PhMYB4 fine-tunes the floral volatile signature of petunia×hybrida through PhC4H. J Exp Bot. 2011;62(3):1133–43. es_ES
dc.description.references Kolosova N, Gorenstein N, Kish CM, Dudareva N. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell. 2001;13(10):2333–47. es_ES
dc.description.references Maeda H, Shasany AK, Schnepp J, Orlova I, Taguchi G, Cooper BR, Rhodes D, Pichersky E, Dudareva N. RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. Plant Cell. 2010;22(3):832–49. es_ES
dc.description.references Lerdau M, Gray D. Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol. 2003;157(2):199–211. es_ES
dc.description.references Martin DM, Gershenzon J, Bohlmann J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol. 2003;132(3):1586–99. es_ES
dc.description.references van Doorn WG, Woltering EJ. Physiology and molecular biology of petal senescence. J Exp Bot. 2008;59(3):453–80. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem