Mostrar el registro sencillo del ítem
dc.contributor.author | Cai, Zhicheng | es_ES |
dc.contributor.author | Li, Xiaoping | es_ES |
dc.contributor.author | Ruiz García, Rubén | es_ES |
dc.contributor.author | Li, Qianmu | es_ES |
dc.date.accessioned | 2020-10-05T06:59:52Z | |
dc.date.available | 2020-10-05T06:59:52Z | |
dc.date.issued | 2017-06 | es_ES |
dc.identifier.issn | 0167-739X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151092 | |
dc.description.abstract | [EN] Bag-of-Tasks (BoT) workflows are widespread in many big data analysis fields. However, there are very few cloud resource provisioning and scheduling algorithms tailored for BoT workflows. Furthermore, existing algorithms fail to consider the stochastic task execution times of BoT workflows which leads to deadline violations and increased resource renting costs. In this paper, we propose a dynamic cloud resource provisioning and scheduling algorithm which aims to fulfill the workflow deadline by using the sum of task execution time expectation and standard deviation to estimate real task execution times. A bag-based delay scheduling strategy and a single-type based virtual machine interval renting method are presented to decrease the resource renting cost. The proposed algorithm is evaluated using a cloud simulator ElasticSim which is extended from CloudSim. The results show that the dynamic algorithm decreases the resource renting cost while guaranteeing the workflow deadline compared to the existing algorithms. (C) 2017 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | The authors would like to thank the reviewers for their constructive and useful comments. This work is supported by the National Natural Science Foundation of China (Grant No. 61602243 and 61572127), the Natural Science Foundation ofJiangsu Province (Grant No. BK20160846), Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology, Grant No. 30916014107), the Fundamental Research Funds for the Central University (Grant No. 30916015104). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD" (No. DP12015-65895-R) co-financed by FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Future Generation Computer Systems | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Scheduling | es_ES |
dc.subject | Workflow | es_ES |
dc.subject | Bag of tasks | es_ES |
dc.subject | Stochastic | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.future.2017.01.020 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//61572127/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Jiangsu Province//BK20160846/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Jiangsu Key Laboratory of Image and Video Understanding for Social Safety//30916014107/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-65895-R/ES/OPTIMIZATION OF SCHEDULING PROBLEMS IN CONTAINER YARDS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//61602243/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//30916015104/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Cai, Z.; Li, X.; Ruiz García, R.; Li, Q. (2017). A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds. Future Generation Computer Systems. 71:57-72. https://doi.org/10.1016/j.future.2017.01.020 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.future.2017.01.020 | es_ES |
dc.description.upvformatpinicio | 57 | es_ES |
dc.description.upvformatpfin | 72 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 71 | es_ES |
dc.relation.pasarela | S\353567 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Natural Science Foundation of Jiangsu Province | es_ES |
dc.contributor.funder | Fundamental Research Funds for the Central Universities | es_ES |
dc.contributor.funder | Jiangsu Key Laboratory of Image and Video Understanding for Social Safety, China | es_ES |