Mostrar el registro sencillo del ítem
dc.contributor.author | García-Gómez, Juan M | es_ES |
dc.contributor.author | Tortajada, Salvador | es_ES |
dc.contributor.author | Vidal, César | es_ES |
dc.contributor.author | Julià -Sapé, Margalida | es_ES |
dc.contributor.author | Luts, Jan | es_ES |
dc.contributor.author | Moreno-Torres, Àngel | es_ES |
dc.contributor.author | Van Huffel, Sabine | es_ES |
dc.contributor.author | Arús, Carles | es_ES |
dc.contributor.author | Robles Viejo, Montserrat | es_ES |
dc.date.accessioned | 2020-10-05T07:00:03Z | |
dc.date.available | 2020-10-05T07:00:03Z | |
dc.date.issued | 2008-12 | es_ES |
dc.identifier.issn | 0952-3480 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151098 | |
dc.description.abstract | [EN] H-1 MRS is becoming an accurate, non-invasive technique for initial examination of brain masses. We investigated if the combination of single-voxel H-1 MRS at 1.5 T at two different (TEs), short TE (PRESS or STEAM, 20-32 ms) and long TE (PRESS, 135-136 ms), improves the classification of brain tumors over using only one echo TE. A clinically validated dataset of 50 low-grade meningiomas, 105 aggressive tumors (glioblastoma and metastasis). and 30 low-grade glial tumors (astrocytomas grade II, oligodendrogliomas anti oligoastrocytomas) was used to fit predictive models based on the combination of features from short-TEs and long-TE spectra. A new approach that combines the two consecutively was used to produce a single data vector from which relevant features of the two TE spectra could be extracted by means of three algorithms: stepwise, reliefF, and principal components analysis. Least Squares support vector machines and linear discriminant analysis were applied to fit the pairwise and multiclass classifiers, respectively. Significant differences in performance were found when short-TE, long-TE or both spectra combined were used as input. In our dataset, to discriminate meningiomas, the combination of the two TE acquisitions produced optimal performance. To discriminate aggressive tumors from low-grade filial tumours, the use of short-TE acquisition alone was preferable. The classifier development strategy used here lends itself to automated learning and test performance processes, which may, be of use for future web-based multicentric classifier development studies. Copyright (c) 2008 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | This work was partially funded by the European Commission: eTUMOUR (contract no. FP6-2002-LIFESCI-HEALTH 503094). HealthAgents (contract no. FP6-2005-IST 027213), BIOPATTERN (contract no. FP6-2002-IST 508803); Programa de Apoyo a la Investigacion y Desarrollo, PAID-00-06 UPV; Research Council KUL: GOA-AMBioRICS, Centers-of-excellence optimisation; Belgian Federal Government: DWTC, IUAPV P6/04 (DYSCO 2007-2011). Jan Luts is a PhD student supported by an IWT grant. We thank INTERPRET partners for providing data, in particular, C. Majos (IDI-Bellvitge), John Griffiths (SGUL), Arend Heerschap (RU), Witold Gajewicz (MUL), and Jorge Calvar (FLENI). We also thank Guillem Mercadal for his feedback about 1H MRS data processing. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | NMR in Biomedicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 1H MRS | es_ES |
dc.subject | Short TE | es_ES |
dc.subject | Long TE | es_ES |
dc.subject | Pattern recognition | es_ES |
dc.subject | Brain | es_ES |
dc.subject | Cancer | es_ES |
dc.subject | Decision support systems | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | The effect of combining two echo times in automatic brain tumor classification by MRS | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/nbm.1288 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/508803/EU/Computational intelligence for Bio-pattern analysis in support of eHealthcare/BIOPATTERN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/027214/EU/Agent-based Distributed Decision Support System for brain tumour diagnosis and prognosis/HEALTHAGENTS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/503094/EU/WEB ACCESSIBLE MR DECISION SUPPORT SYSTEM FOR BRAIN TUMOUR DIAGNOSIS AND PROGNOSIS, INCORPORATING IN VIVO AND EX VIVO GENOMIC AND METABOLIMIC DATA/ETUMOUR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-00-06/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/BELSPO//P6%2F04/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | García-Gómez, JM.; Tortajada, S.; Vidal, C.; Julià -Sapé, M.; Luts, J.; Moreno-Torres, À.; Van Huffel, S.... (2008). The effect of combining two echo times in automatic brain tumor classification by MRS. NMR in Biomedicine. 21(10):1112-1125. https://doi.org/10.1002/nbm.1288 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/nbm.1288 | es_ES |
dc.description.upvformatpinicio | 1112 | es_ES |
dc.description.upvformatpfin | 1125 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.pmid | 18759382 | es_ES |
dc.relation.pasarela | S\36120 | es_ES |
dc.contributor.funder | KU Leuven | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Belgian Federal Science Policy Office | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Howe, F. A., & Opstad, K. S. (2003). 1H MR spectroscopy of brain tumours and masses. NMR in Biomedicine, 16(3), 123-131. doi:10.1002/nbm.822 | es_ES |
dc.description.references | Julià-Sapé, M., Acosta, D., Majós, C., Moreno-Torres, À., Wesseling, P., Acebes, J. J., … Arús, C. (2006). Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database. Journal of Neurosurgery, 105(1), 6-14. doi:10.3171/jns.2006.105.1.6 | es_ES |
dc.description.references | Lin, A. P., Tran, T. T., & Ross, B. D. (2006). Impact of evidence-based medicine on magnetic resonance spectroscopy. NMR in Biomedicine, 19(4), 476-483. doi:10.1002/nbm.1058 | es_ES |
dc.description.references | Tate, A. R., Underwood, J., Acosta, D. M., Julià-Sapé, M., Majós, C., Moreno-Torres, À., … Arús, C. (2006). Development of a decision support system for diagnosis and grading of brain tumours usingin vivo magnetic resonance single voxel spectra. NMR in Biomedicine, 19(4), 411-434. doi:10.1002/nbm.1016 | es_ES |
dc.description.references | Galanaud, D., Nicoli, F., Chinot, O., Confort-Gouny, S., Figarella-Branger, D., Roche, P., … Cozzone, P. J. (2006). Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magnetic Resonance in Medicine, 55(6), 1236-1245. doi:10.1002/mrm.20886 | es_ES |
dc.description.references | Barba, I., Moreno, Á., Martínez-Pérez, I., Tate, A. R., Cabañas, M. E., Baquero, M., … Arús, C. (2001). Magnetic resonance spectroscopy of brain hemangiopericytomas: high myoinositol concentrations and discrimination from meningiomas. Journal of Neurosurgery, 94(1), 55-60. doi:10.3171/jns.2001.94.1.0055 | es_ES |
dc.description.references | Howe, F. A., Barton, S. J., Cudlip, S. A., Stubbs, M., Saunders, D. E., Murphy, M., … Griffiths, J. R. (2003). Metabolic profiles of human brain tumors using quantitative in vivo1H magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 49(2), 223-232. doi:10.1002/mrm.10367 | es_ES |
dc.description.references | Ishimaru, H., Morikawa, M., Iwanaga, S., Kaminogo, M., Ochi, M., & Hayashi, K. (2001). Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. European Radiology, 11(9), 1784-1791. doi:10.1007/s003300000814 | es_ES |
dc.description.references | Kaminogo, M., Ishimaru, H., Morikawa, M., Ochi, M., Ushijima, R., Tani, M., … Shibata, S. (2001). Diagnostic potential of short echo time MR spectroscopy of gliomas with single-voxel and point-resolved spatially localised proton spectroscopy of brain. Neuroradiology, 43(5), 353-363. doi:10.1007/s002340000473 | es_ES |
dc.description.references | Lukas, L., Devos, A., Suykens, J. A. K., Vanhamme, L., Howe, F. A., Majós, C., … Van Huffel, S. (2004). Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine, 31(1), 73-89. doi:10.1016/j.artmed.2004.01.001 | es_ES |
dc.description.references | Gillies, R. J., & Morse, D. L. (2005). In Vivo Magnetic Resonance Spectroscopy in Cancer. Annual Review of Biomedical Engineering, 7(1), 287-326. doi:10.1146/annurev.bioeng.7.060804.100411 | es_ES |
dc.description.references | Lisboa, P. J., & Taktak, A. F. G. (2006). The use of artificial neural networks in decision support in cancer: A systematic review. Neural Networks, 19(4), 408-415. doi:10.1016/j.neunet.2005.10.007 | es_ES |
dc.description.references | Hagberg, G. (1998). From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR in Biomedicine, 11(4-5), 148-156. doi:10.1002/(sici)1099-1492(199806/08)11:4/5<148::aid-nbm511>3.0.co;2-4 | es_ES |
dc.description.references | Menze, B. H., Lichy, M. P., Bachert, P., Kelm, B. M., Schlemmer, H.-P., & Hamprecht, F. A. (2006). Optimal classification of long echo timein vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR in Biomedicine, 19(5), 599-609. doi:10.1002/nbm.1041 | es_ES |
dc.description.references | Simonetti, A. W., Melssen, W. J., Edelenyi, F. S. de, van Asten, J. J. A., Heerschap, A., & Buydens, L. M. C. (2005). Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR in Biomedicine, 18(1), 34-43. doi:10.1002/nbm.919 | es_ES |
dc.description.references | Huang, Y., Lisboa, P. J. G., & El-Deredy, W. (2002). Tumour grading from magnetic resonance spectroscopy: a comparison of feature extraction with variable selection. Statistics in Medicine, 22(1), 147-164. doi:10.1002/sim.1321 | es_ES |
dc.description.references | Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315 | es_ES |
dc.description.references | Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010 | es_ES |
dc.description.references | Suykens, J. A. K., & Vandewalle, J. (1999). Neural Processing Letters, 9(3), 293-300. doi:10.1023/a:1018628609742 | es_ES |
dc.description.references | Opstad, K. S., Ladroue, C., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2007). Linear discriminant analysis of brain tumour1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR in Biomedicine, 20(8), 763-770. doi:10.1002/nbm.1147 | es_ES |
dc.description.references | Kleihues, P., Burger, P. C., & Scheithauer, B. W. (1993). The New WHO Classification of Brain Tumours. Brain Pathology, 3(3), 255-268. doi:10.1111/j.1750-3639.1993.tb00752.x | es_ES |
dc.description.references | Julià-Sapé, M., Acosta, D., Mier, M., Arùs, C., & Watson, D. (2006). A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in vivo MR Spectra of Brain Tumour Patients. Magnetic Resonance Materials in Physics, Biology and Medicine, 19(1), 22-33. doi:10.1007/s10334-005-0023-x | es_ES |
dc.description.references | Van der Graaf, M., Julià-Sapé, M., Howe, F. A., Ziegler, A., Majós, C., Moreno-Torres, A., … Heerschap, A. (2008). MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR in Biomedicine, 21(2), 148-158. doi:10.1002/nbm.1172 | es_ES |
dc.description.references | Klose, U. (1990). In vivo proton spectroscopy in presence of eddy currents. Magnetic Resonance in Medicine, 14(1), 26-30. doi:10.1002/mrm.1910140104 | es_ES |
dc.description.references | McIntyre, D. J. O., Charlton, R. A., Markus, H. S., & Howe, F. A. (2007). Long and short echo time proton magnetic resonance spectroscopic imaging of the healthy aging brain. Journal of Magnetic Resonance Imaging, 26(6), 1596-1606. doi:10.1002/jmri.21198 | es_ES |
dc.description.references | Ramsay, J. O., & Silverman, B. W. (Eds.). (2002). Applied Functional Data Analysis: Methods and Case Studies. Springer Series in Statistics. doi:10.1007/b98886 | es_ES |
dc.description.references | Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. doi:10.1007/978-1-4757-2440-0 | es_ES |
dc.description.references | Kira K, Rendell L. A practical approach to feature selection. In Proceedings of the Ninth International Conference on Machine Learning, Morgan Kaufmann: San Francisco, CA, 1992; 249-256. | es_ES |
dc.description.references | Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. Lecture Notes in Computer Science, 171-182. doi:10.1007/3-540-57868-4_57 | es_ES |
dc.description.references | Robnik-Šikonja, M., & Kononenko, I. (2003). Machine Learning, 53(1/2), 23-69. doi:10.1023/a:1025667309714 | es_ES |
dc.description.references | Martin JK, Hirschberg DS. Small sample statistics for classification error rates I: error rate measurements. Technical Report ICS-TR-96-22, 1996. | es_ES |
dc.description.references | Berrar, D., Bradbury, I., & Dubitzky, W. (2006). Avoiding model selection bias in small-sample genomic datasets. Bioinformatics, 22(10), 1245-1250. doi:10.1093/bioinformatics/btl066 | es_ES |
dc.description.references | Kinoshita, Y., Kajiwara, H., Yokota, A., & Koga, Y. (1994). Proton Magnetic Resonance Spectroscopy of Brain Tumors. Neurosurgery, 35(4), 606-614. doi:10.1227/00006123-199410000-00005 | es_ES |
dc.description.references | Michaelis, T., Merboldt, K.-D., Hänicke, W., Gyngell, M. L., Bruhn, H., & Frahm, J. (1991). On the identification of cerebral metabolites in localized1H NMR spectra of human brainIn vivo. NMR in Biomedicine, 4(2), 90-98. doi:10.1002/nbm.1940040211 | es_ES |
dc.description.references | Martínez-Bisbal, M. C., Martí-Bonmatí, L., Piquer, J., Revert, A., Ferrer, P., Llácer, J. L., … Celda, B. (2004). 1H and13C HR-MAS spectroscopy of intact biopsy samplesex vivo andin vivo1H MRS study of human high grade gliomas. NMR in Biomedicine, 17(4), 191-205. doi:10.1002/nbm.888 | es_ES |
dc.description.references | KleihuesP, CavaneeW (eds). Pathology and Genetics of Tumours of the Nervous System. International Agency for Research on Cancer: Lyon, 1997. | es_ES |
dc.description.references | Mischel, P. S., Shai, R., Shi, T., Horvath, S., Lu, K. V., Choe, G., … Nelson, S. F. (2003). Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene, 22(15), 2361-2373. doi:10.1038/sj.onc.1206344 | es_ES |
dc.description.references | Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., … Aldape, K. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157-173. doi:10.1016/j.ccr.2006.02.019 | es_ES |
dc.description.references | Law, M., Cha, S., Knopp, E. A., Johnson, G., Arnett, J., & Litt, A. W. (2002). High-Grade Gliomas and Solitary Metastases: Differentiation by Using Perfusion and Proton Spectroscopic MR Imaging. Radiology, 222(3), 715-721. doi:10.1148/radiol.2223010558 | es_ES |