- -

Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belenguer, Ángel es_ES
dc.contributor.author Cano, Juan Luis es_ES
dc.contributor.author Esteban González, Héctor es_ES
dc.contributor.author Artal, Eduardo es_ES
dc.contributor.author Boria Esbert, Vicente Enrique es_ES
dc.date.accessioned 2020-10-05T07:00:12Z
dc.date.available 2020-10-05T07:00:12Z
dc.date.issued 2017-01 es_ES
dc.identifier.issn 0048-6604 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151101
dc.description.abstract [EN] Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia y Competitividad, Spanish Goverment, under research projects TEC2013-47037-C5-3-R, TEC2013-47037-C5-1-R, AYA2013-49759-EXP, and CSD2010-00064. All the data related with this work can be requested to H. Esteban writing to hesteban@dcom.upv.es es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Radio Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Substrate integrated waveguide es_ES
dc.subject E-plane rectangular waveguide es_ES
dc.subject Empty substrate integrated waveguide es_ES
dc.subject Phase shifter es_ES
dc.subject Printed circuit boards es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/2016RS006181 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-47037-C5-1-R/ES/SOLUCIONES TECNOLOGICAS COMPACTAS PARA DISPOSITIVOS PASIVOS DE ALTA FRECUENCIA CON RESPUESTAS AVANZADAS Y RECONFIGURABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-47037-C5-3-R/ES/NUEVAS TOPOLOGIAS CON ALTAS PRESTACIONES DE CIRCUITOS PASIVOS SIW Y METAMATERIALES PARA COMUNICACIONES VIA SATELITE CON APLICACIONES EN PROTECCION, DEFENSA Y SEGURIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AYA2013-49759-EXP/ES/RECEPTORES DE RADIOASTRONOMIA CON GUIAS INTEGRADAS EN SUBSTRATO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2010-00064/ES/Explorando la Física de Inflación/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Belenguer, Á.; Cano, JL.; Esteban González, H.; Artal, E.; Boria Esbert, VE. (2017). Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits. Radio Science. 52(1):49-69. https://doi.org/10.1002/2016RS006181 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/2016RS006181 es_ES
dc.description.upvformatpinicio 49 es_ES
dc.description.upvformatpfin 69 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\330178 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Arregui, I., Arnedo, I., Lujambio, A., Chudzik, M., Benito, D., Jost, R., … Laso, M. A. G. (2010). A Compact Design of High-Power Spurious-Free Low-Pass Waveguide Filter. IEEE Microwave and Wireless Components Letters, 20(11), 595-597. doi:10.1109/lmwc.2010.2072989 es_ES
dc.description.references Belenguer, A., Esteban, H., & Boria, V. E. (2014). Novel Empty Substrate Integrated Waveguide for High-Performance Microwave Integrated Circuits. IEEE Transactions on Microwave Theory and Techniques, 62(4), 832-839. doi:10.1109/tmtt.2014.2309637 es_ES
dc.description.references Bigelli, F., Mencarelli, D., Farina, M., Venanzoni, G., Scalmati, P., Renghini, C., & Morini, A. (2016). Design and Fabrication of a Dielectricless Substrate-Integrated Waveguide. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(2), 256-261. doi:10.1109/tcpmt.2015.2513077 es_ES
dc.description.references Budimir, D. (1997). Optimized E-plane bandpass filters with improved stopband performance. IEEE Transactions on Microwave Theory and Techniques, 45(2), 212-220. doi:10.1109/22.557602 es_ES
dc.description.references Cassivi, Y., & Ke Wu. (2004). Substrate integrated nonradiative dielectric waveguide. IEEE Microwave and Wireless Components Letters, 14(3), 89-91. doi:10.1109/lmwc.2004.824808 es_ES
dc.description.references Chen , J. W. Hong P. Yan B. Liu Y. Wang K. Wu 2007 Design of a six-port junction using half-mode substrate integrated waveguide paper presented at Asia Pacific Microwave Conference 2007, APMC 2007, pp. 679-681, 11-14 Dec. 10.1109/APMC.2007.4554870 es_ES
dc.description.references Ji-Xin Chen, Wei Hong, Zhang-Cheng Hao, Hao Li, & Ke Wu. (2006). Development of a low cost microwave mixer using a broad-band substrate integrated waveguide (SIW) coupler. IEEE Microwave and Wireless Components Letters, 16(2), 84-86. doi:10.1109/lmwc.2005.863199 es_ES
dc.description.references Chen, X. (2007). EM Modeling of Microstrip Conductor Losses Including Surface Roughness Effect. IEEE Microwave and Wireless Components Letters, 17(2), 94-96. doi:10.1109/lmwc.2006.890326 es_ES
dc.description.references Cheng , Y. W. Hong K. Wu 2007 Novel substrate integrated waveguide fixed phase shifter for 180-degree directional coupler paper presented at 2007 IEEE TMTT S International Microwave Symposium, pp. 189-192, IEEE, 3-8 Jun. 10.1109/MWSYM.2007.380322 es_ES
dc.description.references Yu Jian Cheng, Wei Hong, & Ke Wu. (2010). Broadband Self-Compensating Phase Shifter Combining Delay Line and Equal-Length Unequal-Width Phaser. IEEE Transactions on Microwave Theory and Techniques, 58(1), 203-210. doi:10.1109/tmtt.2009.2035942 es_ES
dc.description.references Computer Simulation Technology 2016 Computer Simulation Technology https://www.cst.com es_ES
dc.description.references Deslandes, D., & Wu, K. (2001). Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters, 11(2), 68-70. doi:10.1109/7260.914305 es_ES
dc.description.references Deslandes , D. M. Bozzi P. Arcioni K. Wu 2003 Substrate integrated slab waveguide (SISW) for wideband microwave applications 10.1109/MWSYM.2003.1212561 es_ES
dc.description.references Djerafi, T., Wu, K., & Tatu, S. O. (2014). 3 dB 90<formula formulatype=«inline»><tex Notation=«TeX»>$^{\circ}$</tex> </formula> Hybrid Quasi-Optical Coupler With Air Field Slab in SIW Technology. IEEE Microwave and Wireless Components Letters, 24(4), 221-223. doi:10.1109/lmwc.2013.2295297 es_ES
dc.description.references Djerafi, T., Tatu, S. O., & Wu, K. (2015). Substrate-integrated waveguide phase shifter with rod-loaded artificial dielectric slab. Electronics Letters, 51(9), 707-709. doi:10.1049/el.2015.0286 es_ES
dc.description.references Entesari, K., Saghati, A. P., Sekar, V., & Armendariz, M. (2015). Tunable SIW Structures: Antennas, VCOs, and Filters. IEEE Microwave Magazine, 16(5), 34-54. doi:10.1109/mmm.2015.2408273 es_ES
dc.description.references Fernandez, M. D., Ballesteros, J. A., & Belenguer, A. (2015). Design of a Hybrid Directional Coupler in Empty Substrate Integrated Waveguide (ESIW). IEEE Microwave and Wireless Components Letters, 25(12), 796-798. doi:10.1109/lmwc.2015.2496803 es_ES
dc.description.references Fernández Berlanga, M. D., Belenguer Martínez, Á., Esteban González, H., Martínez Cano, L., & Ballesteros Garrido, J. A. (2015). Thru–reflect–line calibration for empty substrate integrated waveguide with microstrip transitions. Electronics Letters, 51(16), 1274-1276. doi:10.1049/el.2015.1393 es_ES
dc.description.references Hong , W. B. Liu Y. Wang Q. Lai H. Tang X. X. Yin Y. D. Dong Y. Zhang K. Wu 2006 Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application 10.1109/ICIMW.2006.368427 es_ES
dc.description.references Jin, L., Lee, R. M. A., & Robertson, I. (2014). Analysis and Design of a Novel Low-Loss Hollow Substrate Integrated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 62(8), 1616-1624. doi:10.1109/tmtt.2014.2328555 es_ES
dc.description.references JMicroTechnology 2016 Jmicro Technology, probe station http://www.jmicrotechnology.com es_ES
dc.description.references Le Coq, M., Rius, E., Favennec, J.-F., Quendo, C., Potelon, B., Estagerie, L., … El Mostrah, A. (2015). Miniaturized C-Band SIW Filters Using High-Permittivity Ceramic Substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(5), 620-626. doi:10.1109/tcpmt.2015.2422613 es_ES
dc.description.references Levy, R. (1973). Tapered Corrugated Waveguide Low-pass Filters. IEEE Transactions on Microwave Theory and Techniques, 21(8), 526-532. doi:10.1109/tmtt.1973.1128052 es_ES
dc.description.references Li , C. W. Che P. Russer Y. Chow 2008 Propagation and band broadening effect of planar ridged substrate-integrated waveguide (RSIW) 467 470 10.1109/ICMMT.2008.4540427 es_ES
dc.description.references Mateo, J., Torres, A. M., Belenguer, A., & Borja, A. L. (2016). Highly Efficient and Well-Matched Empty Substrate Integrated Waveguide H-Plane Horn Antenna. IEEE Antennas and Wireless Propagation Letters, 15, 1510-1513. doi:10.1109/lawp.2016.2516103 es_ES
dc.description.references Mician 2016 μ Wave-wizard commercial EM simulator http://www.mician.com/content/products/wave_wizard es_ES
dc.description.references Moldovan, E., Bosisio, R. G., & Ke Wu. (2006). W-band multiport substrate-integrated waveguide circuits. IEEE Transactions on Microwave Theory and Techniques, 54(2), 625-632. doi:10.1109/tmtt.2005.862670 es_ES
dc.description.references Parment, F., Ghiotto, A., Vuong, T.-P., Duchamp, J.-M., & Wu, K. (2015). Air-Filled Substrate Integrated Waveguide for Low-Loss and High Power-Handling Millimeter-Wave Substrate Integrated Circuits. IEEE Transactions on Microwave Theory and Techniques, 63(4), 1228-1238. doi:10.1109/tmtt.2015.2408593 es_ES
dc.description.references Parment , F. A. Ghiotto T.-P. Vuong J.-M. Duchamp K. Wu 2015b Low-loss air-filled substrate integrated waveguide (SIW) band-pass filter with inductive posts paper presented at 2015 European Microwave Conference (EuMC), pp. 761 764, IEEE, 7-10 Sep. 10.1109/EuMC.2015.7345875 es_ES
dc.description.references Pourghorban Saghati, A., Pourghorban Saghati, A., & Entesari, K. (2015). Ultra-Miniature SIW Cavity Resonators and Filters. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4329-4340. doi:10.1109/tmtt.2015.2494023 es_ES
dc.description.references Rong , Y. K. Zaki M. Hageman D. Stevens J. Gipprich 1999 Low temperature cofired ceramic (LTCC) ridge waveguide bandpass filters 10.1109/MWSYM.1999.779590 es_ES
dc.description.references Tan, L.-R., Wu, R.-X., & Poo, Y. (2015). Magnetically Reconfigurable SIW Antenna with Tunable Frequencies and Polarizations. IEEE Transactions on Antennas and Propagation, 63(6), 2772-2776. doi:10.1109/tap.2015.2414446 es_ES
dc.description.references Tekkouk, K., Ettorre, M., Le Coq, L., & Sauleau, R. (2016). Multibeam SIW Slotted Waveguide Antenna System Fed by a Compact Dual-Layer Rotman Lens. IEEE Transactions on Antennas and Propagation, 64(2), 504-514. doi:10.1109/tap.2015.2499752 es_ES
dc.description.references Vahldieck, R., Bornemann, J., Arndt, F., & Grauerholz, D. (1984). W-Band Low-Insertion-Loss E-Plane Filter (Short Paper). IEEE Transactions on Microwave Theory and Techniques, 32(1), 133-135. doi:10.1109/tmtt.1984.1132628 es_ES
dc.description.references Xinyu Xu, Bosisio, R. G., & Ke Wu. (2005). A new six-port junction based on substrate integrated waveguide technology. IEEE Transactions on Microwave Theory and Techniques, 53(7), 2267-2273. doi:10.1109/tmtt.2005.850455 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem