- -

Small-scale distributions in an indoor environment at 94GHz

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Small-scale distributions in an indoor environment at 94GHz

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reig, Juan es_ES
dc.contributor.author Martinez-Ingles, M.T. es_ES
dc.contributor.author Molina-Garcia-Pardo, J.M. es_ES
dc.contributor.author Rubio Arjona, Lorenzo es_ES
dc.contributor.author Rodrigo Peñarrocha, Vicent Miquel es_ES
dc.date.accessioned 2020-10-05T07:00:21Z
dc.date.available 2020-10-05T07:00:21Z
dc.date.issued 2017-07 es_ES
dc.identifier.issn 0048-6604 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151104
dc.description.abstract [EN] In this paper, an extensive multiple-input multiple-output measurement campaign in a lab environment has been conducted at the 94GHz band. Using a vector network analyzer, updown converters, and omnidirectional antennas displaced in virtual arrays, we have obtained an estimation of the distribution parameters for the most usual distributions employed in the small-scale fading modeling, i.e., Rayleigh, Rice, Nakagami-m and -, by using statistical inference techniques. Moreover, in this scenario the best fit distribution to the experimental data is the Weibull distribution, using the Kolmogorov-Smirnov test. However, the - distribution provides the best fitting to the experimental results in terms of the lower tails of the distributions. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia y Competitividad MINECO, Spain (TEC2016-78028-C3-2-P) and by the European FEDER funds. Further information regarding the data obtained and included in this paper can be attained by contacting the author, Jose M. Molina (josemaria.molina@upct.es). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Radio Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Millimeter wave propagatio es_ES
dc.subject MIMO es_ES
dc.subject Fading es_ES
dc.subject Small-scale distributions es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Small-scale distributions in an indoor environment at 94GHz es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/2017RS006335 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-78028-C3-2-P/ES/MODELADO Y CARACTERIZACION DEL CANAL EN BANDAS DE MICROONDAS, MILIMETRICAS Y TERAHERCIOS PARA COMUNICACIONES E IMAGING/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Reig, J.; Martinez-Ingles, M.; Molina-Garcia-Pardo, J.; Rubio Arjona, L.; Rodrigo Peñarrocha, VM. (2017). Small-scale distributions in an indoor environment at 94GHz. Radio Science. 52(7):852-861. https://doi.org/10.1002/2017RS006335 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/2017RS006335 es_ES
dc.description.upvformatpinicio 852 es_ES
dc.description.upvformatpfin 861 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\354060 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cudak, M., Ghosh, A., Kovarik, T., Ratasuk, R., Thomas, T. A., Vook, F. W., & Moorut, P. (2013). Moving Towards Mmwave-Based Beyond-4G (B-4G) Technology. 2013 IEEE 77th Vehicular Technology Conference (VTC Spring). doi:10.1109/vtcspring.2013.6692638 es_ES
dc.description.references Everitt, B. S., & Skrondal, A. (2010). The Cambridge Dictionary of Statistics. doi:10.1017/cbo9780511779633 es_ES
dc.description.references Helminger, J., Detlefsen, J., & Groll, H. (s. f.). Propagation properties of an indoor-channel at 94 GHz. ICMMT’98. 1998 International Conference on Microwave and Millimeter Wave Technology. Proceedings (Cat. No.98EX106). doi:10.1109/icmmt.1998.768215 es_ES
dc.description.references Moon-Soon Choi, Grosskopf, G., & Rohde, D. (s. f.). Statistical Characteristics of 60 GHz Wideband Indoor Propagation Channel. 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications. doi:10.1109/pimrc.2005.1651506 es_ES
dc.description.references Kajiwara, A. (s. f.). Indoor propagation measurements at 94 GHz. Proceedings of 6th International Symposium on Personal, Indoor and Mobile Radio Communications. doi:10.1109/pimrc.1995.477099 es_ES
dc.description.references Maccartney, G. R., Rappaport, T. S., Sun, S., & Deng, S. (2015). Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks. IEEE Access, 3, 2388-2424. doi:10.1109/access.2015.2486778 es_ES
dc.description.references Marcum J. I. 1950 Table of Q functions es_ES
dc.description.references Martinez-Ingles, M.-T., Gaillot, D. P., Pascual-Garcia, J., Molina-Garcia-Pardo, J.-M., Rodríguez, J.-V., Rubio, L., & Juan-Llácer, L. (2016). Channel sounding and indoor radio channel characteristics in the W-band. EURASIP Journal on Wireless Communications and Networking, 2016(1). doi:10.1186/s13638-016-0530-7 es_ES
dc.description.references Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges. Proceedings of the IEEE, 102(3), 366-385. doi:10.1109/jproc.2014.2299397 es_ES
dc.description.references Reig, J., Martínez-Inglés, M.-T., Rubio, L., Rodrigo-Peñarrocha, V.-M., & Molina-García-Pardo, J.-M. (2014). Fading Evaluation in the 60 GHz Band in Line-of-Sight Conditions. International Journal of Antennas and Propagation, 2014, 1-12. doi:10.1155/2014/984102 es_ES
dc.description.references Thomas, H. J., Cole, R. S., & Siqueira, G. L. (1994). An experimental study of the propagation of 55 GHz millimeter waves in an urban mobile radio environment. IEEE Transactions on Vehicular Technology, 43(1), 140-146. doi:10.1109/25.282274 es_ES
dc.description.references Thomas, T. A., Vook, F. W., & Sun, S. (2015). Investigation into the effects of polarization in the indoor mmWave environment. 2015 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2015.7248517 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem