Mostrar el registro sencillo del ítem
dc.contributor.author | Reig, Juan | es_ES |
dc.contributor.author | Martinez-Ingles, M.T. | es_ES |
dc.contributor.author | Molina-Garcia-Pardo, J.M. | es_ES |
dc.contributor.author | Rubio Arjona, Lorenzo | es_ES |
dc.contributor.author | Rodrigo Peñarrocha, Vicent Miquel | es_ES |
dc.date.accessioned | 2020-10-05T07:00:21Z | |
dc.date.available | 2020-10-05T07:00:21Z | |
dc.date.issued | 2017-07 | es_ES |
dc.identifier.issn | 0048-6604 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151104 | |
dc.description.abstract | [EN] In this paper, an extensive multiple-input multiple-output measurement campaign in a lab environment has been conducted at the 94GHz band. Using a vector network analyzer, updown converters, and omnidirectional antennas displaced in virtual arrays, we have obtained an estimation of the distribution parameters for the most usual distributions employed in the small-scale fading modeling, i.e., Rayleigh, Rice, Nakagami-m and -, by using statistical inference techniques. Moreover, in this scenario the best fit distribution to the experimental data is the Weibull distribution, using the Kolmogorov-Smirnov test. However, the - distribution provides the best fitting to the experimental results in terms of the lower tails of the distributions. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Economia y Competitividad MINECO, Spain (TEC2016-78028-C3-2-P) and by the European FEDER funds. Further information regarding the data obtained and included in this paper can be attained by contacting the author, Jose M. Molina (josemaria.molina@upct.es). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Radio Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Millimeter wave propagatio | es_ES |
dc.subject | MIMO | es_ES |
dc.subject | Fading | es_ES |
dc.subject | Small-scale distributions | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Small-scale distributions in an indoor environment at 94GHz | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/2017RS006335 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-78028-C3-2-P/ES/MODELADO Y CARACTERIZACION DEL CANAL EN BANDAS DE MICROONDAS, MILIMETRICAS Y TERAHERCIOS PARA COMUNICACIONES E IMAGING/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Reig, J.; Martinez-Ingles, M.; Molina-Garcia-Pardo, J.; Rubio Arjona, L.; Rodrigo Peñarrocha, VM. (2017). Small-scale distributions in an indoor environment at 94GHz. Radio Science. 52(7):852-861. https://doi.org/10.1002/2017RS006335 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/2017RS006335 | es_ES |
dc.description.upvformatpinicio | 852 | es_ES |
dc.description.upvformatpfin | 861 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\354060 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Cudak, M., Ghosh, A., Kovarik, T., Ratasuk, R., Thomas, T. A., Vook, F. W., & Moorut, P. (2013). Moving Towards Mmwave-Based Beyond-4G (B-4G) Technology. 2013 IEEE 77th Vehicular Technology Conference (VTC Spring). doi:10.1109/vtcspring.2013.6692638 | es_ES |
dc.description.references | Everitt, B. S., & Skrondal, A. (2010). The Cambridge Dictionary of Statistics. doi:10.1017/cbo9780511779633 | es_ES |
dc.description.references | Helminger, J., Detlefsen, J., & Groll, H. (s. f.). Propagation properties of an indoor-channel at 94 GHz. ICMMT’98. 1998 International Conference on Microwave and Millimeter Wave Technology. Proceedings (Cat. No.98EX106). doi:10.1109/icmmt.1998.768215 | es_ES |
dc.description.references | Moon-Soon Choi, Grosskopf, G., & Rohde, D. (s. f.). Statistical Characteristics of 60 GHz Wideband Indoor Propagation Channel. 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications. doi:10.1109/pimrc.2005.1651506 | es_ES |
dc.description.references | Kajiwara, A. (s. f.). Indoor propagation measurements at 94 GHz. Proceedings of 6th International Symposium on Personal, Indoor and Mobile Radio Communications. doi:10.1109/pimrc.1995.477099 | es_ES |
dc.description.references | Maccartney, G. R., Rappaport, T. S., Sun, S., & Deng, S. (2015). Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks. IEEE Access, 3, 2388-2424. doi:10.1109/access.2015.2486778 | es_ES |
dc.description.references | Marcum J. I. 1950 Table of Q functions | es_ES |
dc.description.references | Martinez-Ingles, M.-T., Gaillot, D. P., Pascual-Garcia, J., Molina-Garcia-Pardo, J.-M., Rodríguez, J.-V., Rubio, L., & Juan-Llácer, L. (2016). Channel sounding and indoor radio channel characteristics in the W-band. EURASIP Journal on Wireless Communications and Networking, 2016(1). doi:10.1186/s13638-016-0530-7 | es_ES |
dc.description.references | Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges. Proceedings of the IEEE, 102(3), 366-385. doi:10.1109/jproc.2014.2299397 | es_ES |
dc.description.references | Reig, J., Martínez-Inglés, M.-T., Rubio, L., Rodrigo-Peñarrocha, V.-M., & Molina-García-Pardo, J.-M. (2014). Fading Evaluation in the 60 GHz Band in Line-of-Sight Conditions. International Journal of Antennas and Propagation, 2014, 1-12. doi:10.1155/2014/984102 | es_ES |
dc.description.references | Thomas, H. J., Cole, R. S., & Siqueira, G. L. (1994). An experimental study of the propagation of 55 GHz millimeter waves in an urban mobile radio environment. IEEE Transactions on Vehicular Technology, 43(1), 140-146. doi:10.1109/25.282274 | es_ES |
dc.description.references | Thomas, T. A., Vook, F. W., & Sun, S. (2015). Investigation into the effects of polarization in the indoor mmWave environment. 2015 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2015.7248517 | es_ES |