Mostrar el registro sencillo del ítem
dc.contributor.author | Ariza-Chacón, Helbert Eduardo | es_ES |
dc.contributor.author | Correcher Salvador, Antonio | es_ES |
dc.contributor.author | Sánchez-Diaz, Carlos | es_ES |
dc.contributor.author | Pérez-Navarro, Ángel | es_ES |
dc.contributor.author | García Moreno, Emilio | es_ES |
dc.date.accessioned | 2020-10-06T03:31:26Z | |
dc.date.available | 2020-10-06T03:31:26Z | |
dc.date.issued | 2018-08-13 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151154 | |
dc.description.abstract | [EN] Proton Exchange Membrane Fuel Cell (PEMFC) fuel cells is a technology successfully used in the production of energy from hydrogen, allowing the use of hydrogen as an energy vector. It is scalable for stationary and mobile applications. However, the technology demands more research. An important research topic is fault diagnosis and condition monitoring to improve the life and the efficiency and to reduce the operation costs of PEMFC devices. Consequently, there is a need of physical models that allow deep analysis. These models must be accurate enough to represent the PEMFC behavior and to allow the identification of different internal signals of a PEM fuel cell. This work presents a PEM fuel cell model that uses the output temperature in a closed loop, so it can represent the thermal and the electrical behavior. The model is used to represent a Nexa Ballard 1.2 kW fuel cell; therefore, it is necessary to fit the coefficients to represent the real behavior. Five optimization algorithms were tested to fit the model, three of them taken from literature and two proposed in this work. Finally, the model with the identified parameters was validated with real data. | es_ES |
dc.description.sponsorship | This research was funded by COLCIENCIAS (Administrative department of science, technology and innovation of Colombia) scholarship program PDBCEx, COLDOC 586, and the support provided by the Corporacion Universitaria Comfacauca, Popayan-Colombia | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | PEM fuel cell | es_ES |
dc.subject | Identification | es_ES |
dc.subject | Genetic algorithm | es_ES |
dc.subject | Model | es_ES |
dc.subject | LabVIEW | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en11082099 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COLCIENCIAS//COLDOC 586/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Ariza-Chacón, HE.; Correcher Salvador, A.; Sánchez-Diaz, C.; Pérez-Navarro, Á.; García Moreno, E. (2018). Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm. Energies. 11(8):1-15. https://doi.org/10.3390/en11082099 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en11082099 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\367326 | es_ES |
dc.contributor.funder | Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia | es_ES |
dc.description.references | Mehta, V., & Cooper, J. S. (2003). Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1), 32-53. doi:10.1016/s0378-7753(02)00542-6 | es_ES |
dc.description.references | Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030 | es_ES |
dc.description.references | Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., & Harris, T. J. (1995). Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: I . Mechanistic Model Development. Journal of The Electrochemical Society, 142(1), 1-8. doi:10.1149/1.2043866 | es_ES |
dc.description.references | Tao, S., Si-jia, Y., Guang-yi, C., & Xin-jian, Z. (2005). Modelling and control PEMFC using fuzzy neural networks. Journal of Zhejiang University-SCIENCE A, 6(10), 1084-1089. doi:10.1631/jzus.2005.a1084 | es_ES |
dc.description.references | Amphlett, J. C., Mann, R. F., Peppley, B. A., Roberge, P. R., & Rodrigues, A. (1996). A model predicting transient responses of proton exchange membrane fuel cells. Journal of Power Sources, 61(1-2), 183-188. doi:10.1016/s0378-7753(96)02360-9 | es_ES |
dc.description.references | Mo, Z.-J., Zhu, X.-J., Wei, L.-Y., & Cao, G.-Y. (2006). Parameter optimization for a PEMFC model with a hybrid genetic algorithm. International Journal of Energy Research, 30(8), 585-597. doi:10.1002/er.1170 | es_ES |
dc.description.references | YE, M., WANG, X., & XU, Y. (2009). Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. International Journal of Hydrogen Energy, 34(2), 981-989. doi:10.1016/j.ijhydene.2008.11.026 | es_ES |
dc.description.references | Askarzadeh, A., & Rezazadeh, A. (2011). A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 36(8), 5047-5053. doi:10.1016/j.ijhydene.2011.01.070 | es_ES |
dc.description.references | El-Fergany, A. A. (2018). Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renewable Power Generation, 12(1), 9-17. doi:10.1049/iet-rpg.2017.0232 | es_ES |
dc.description.references | Li, Q., Chen, W., Wang, Y., Liu, S., & Jia, J. (2011). Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization. IEEE Transactions on Industrial Electronics, 58(6), 2410-2419. doi:10.1109/tie.2010.2060456 | es_ES |
dc.description.references | Ali, M., El-Hameed, M. A., & Farahat, M. A. (2017). Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renewable Energy, 111, 455-462. doi:10.1016/j.renene.2017.04.036 | es_ES |
dc.description.references | Sun, Z., Wang, N., Bi, Y., & Srinivasan, D. (2015). Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy, 90, 1334-1341. doi:10.1016/j.energy.2015.06.081 | es_ES |
dc.description.references | Gong, W., Yan, X., Liu, X., & Cai, Z. (2015). Parameter extraction of different fuel cell models with transferred adaptive differential evolution. Energy, 86, 139-151. doi:10.1016/j.energy.2015.03.117 | es_ES |
dc.description.references | Turgut, O. E., & Coban, M. T. (2016). Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – Differential Evolution algorithm. Ain Shams Engineering Journal, 7(1), 347-360. doi:10.1016/j.asej.2015.05.003 | es_ES |
dc.description.references | Al-Othman, A. K., Ahmed, N. A., Al-Fares, F. S., & AlSharidah, M. E. (2015). Parameter Identification of PEM Fuel Cell Using Quantum-Based Optimization Method. Arabian Journal for Science and Engineering, 40(9), 2619-2628. doi:10.1007/s13369-015-1711-0 | es_ES |
dc.description.references | Methekar, R. N., Prasad, V., & Gudi, R. D. (2007). Dynamic analysis and linear control strategies for proton exchange membrane fuel cell using a distributed parameter model. Journal of Power Sources, 165(1), 152-170. doi:10.1016/j.jpowsour.2006.11.047 | es_ES |
dc.description.references | KUNUSCH, C., HUSAR, A., PULESTON, P., MAYOSKY, M., & MORE, J. (2008). Linear identification and model adjustment of a PEM fuel cell stack. International Journal of Hydrogen Energy, 33(13), 3581-3587. doi:10.1016/j.ijhydene.2008.04.052 | es_ES |
dc.description.references | Li, C.-H., Zhu, X.-J., Cao, G.-Y., Sui, S., & Hu, M.-R. (2008). Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines. Journal of Power Sources, 175(1), 303-316. doi:10.1016/j.jpowsour.2007.09.049 | es_ES |
dc.description.references | Fontes, G., Turpin, C., & Astier, S. (2010). A Large-Signal and Dynamic Circuit Model of a $\hbox{H}_{2}/\hbox{O}_{2}$ PEM Fuel Cell: Description, Parameter Identification, and Exploitation. IEEE Transactions on Industrial Electronics, 57(6), 1874-1881. doi:10.1109/tie.2010.2044731 | es_ES |
dc.description.references | Cheng, S.-J., & Liu, J.-J. (2015). Nonlinear modeling and identification of proton exchange membrane fuel cell (PEMFC). International Journal of Hydrogen Energy, 40(30), 9452-9461. doi:10.1016/j.ijhydene.2015.05.109 | es_ES |
dc.description.references | Buchholz, M., & Krebs, V. (2007). Dynamic Modelling of a Polymer Electrolyte Membrane Fuel Cell Stack by Nonlinear System Identification. Fuel Cells, 7(5), 392-401. doi:10.1002/fuce.200700013 | es_ES |
dc.description.references | Meiler, M., Schmid, O., Schudy, M., & Hofer, E. P. (2008). Dynamic fuel cell stack model for real-time simulation based on system identification. Journal of Power Sources, 176(2), 523-528. doi:10.1016/j.jpowsour.2007.08.051 | es_ES |
dc.description.references | Wang, C., Nehrir, M. H., & Shaw, S. R. (2005). Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits. IEEE Transactions on Energy Conversion, 20(2), 442-451. doi:10.1109/tec.2004.842357 | es_ES |
dc.description.references | Restrepo, C., Konjedic, T., Garces, A., Calvente, J., & Giral, R. (2015). Identification of a Proton-Exchange Membrane Fuel Cell’s Model Parameters by Means of an Evolution Strategy. IEEE Transactions on Industrial Informatics, 11(2), 548-559. doi:10.1109/tii.2014.2317982 | es_ES |
dc.description.references | Salim, R., Nabag, M., Noura, H., & Fardoun, A. (2015). The parameter identification of the Nexa 1.2 kW PEMFC’s model using particle swarm optimization. Renewable Energy, 82, 26-34. doi:10.1016/j.renene.2014.10.012 | es_ES |
dc.description.references | Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030 | es_ES |