- -

Towards a Unified Analysis of Brain Maturation and Aging across the Entire Lifespan: A MRI Analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Towards a Unified Analysis of Brain Maturation and Aging across the Entire Lifespan: A MRI Analysis

Show simple item record

Files in this item

dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Catheline, Gwenaelle es_ES
dc.contributor.author Lanuza, Enrique es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.date.accessioned 2020-10-06T03:31:57Z
dc.date.available 2020-10-06T03:31:57Z
dc.date.issued 2017-11 es_ES
dc.identifier.issn 1065-9471 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151162
dc.description "This is the peer reviewed version of the following article: Coupé, Pierrick, Gwenaelle Catheline, Enrique Lanuza, and José Vicente Manjón. 2017. Towards a Unified Analysis of Brain Maturation and Aging across the Entire Lifespan: A MRI Analysis. Human Brain Mapping 38 (11). Wiley: 5501 18. doi:10.1002/hbm.23743, which has been published in final form at https://doi.org/10.1002/hbm.23743. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] There is no consensus in literature about lifespan brain maturation and senescence, mainly because previous lifespan studies have been performed on restricted age periods and/or with a limited number of scans, making results instable and their comparison very difficult. Moreover, the use of nonharmonized tools and different volumetric measurements lead to a great discrepancy in reported results. Thanks to the new paradigm of BigData sharing in neuroimaging and the last advances in image processing enabling to process baby as well as elderly scans with the same tool, new insights on brain maturation and aging can be obtained. This study presents brain volume trajectory over the entire lifespan using the largest age range to date (from few months of life to elderly) and one of the largest number of subjects (N=2,944). First, we found that white matter trajectory based on absolute and normalized volumes follows an inverted U-shape with a maturation peak around middle life. Second, we found that from 1 to 8-10 y there is an absolute gray matter (GM) increase related to body growth followed by a GM decrease. However, when normalized volumes were considered, GM continuously decreases all along the life. Finally, we found that this observation holds for almost all the considered subcortical structures except for amygdala which is rather stable and hippocampus which exhibits an inverted U-shape with a longer maturation period. By revealing the entire brain trajectory picture, a consensus can be drawn since most of the previously discussed discrepancies can be explained. Hum Brain Mapp 38:5501-5518, 2017. (C) 2017 Wiley Periodicals, Inc. es_ES
dc.description.sponsorship French State (French National Research Ageny in the frame of the Investments for the future Program IdEx Bordeaux); Contract grant number: ANR-10-IDEX-03-02, HL-MRI Project; Contract grant sponsor: Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57); Contract grant sponsor: CNRS ("Defi imag'In and the dedicated volBrain support); Contract grant sponsor: Ministerio de Economia y competitividad (Spanish); Contract grant number: TIN2013-43457-R; Contract grant sponsor: National Institute of Child Health and Human Development; Contract grant number: HHSN275200900018C; Contract grant sponsors: National Institute of Child Health and Human Development, the National Institute on Drug Abuse, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke; Contract grant numbers: N01- HD02-3343, N01-MH9-0002, and N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320; Contract grant sponsor: National Institutes of Health; Contract grant number: U01 AG024904; Contract grant sponsor: National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering (ADNI); Contract grant sponsor: NIH; Contract grant number: P30AG010129, K01 AG030514; Contract grant sponsor: Dana Foundation; Contract grant sponsor: OASIS project (OASIS data); Contract grant numbers: P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584; Contract grant sponsor: Common-wealth Scientific Industrial Research Organization (a publicly funded government research organization); Contract grant sponsor: Science Industry Endowment Fund, National Health and Medical Research Council of Australia; Contract grant number: 1011689; Contract grant sponsors: Alzheimer's Association, Alzheimer's Drug Discovery Foundation, and an anonymous foundation; Contract grant sponsor: Human Brain Project; Contract grant number: PO1MHO52176-11 (ICBM, P.I. Dr John Mazziotta); Contract grant sponsor: Canadian Institutes of Health Research; Contract grant number: MOP-34996; Contract grant sponsor: U.K. Engineering and Physical Sciences Research Council (EPSRC); Contract grant number: GR/S21533/02; Contract grant sponsor: ABIDE funding resources; Contract grant sponsor: NIMH; Contract grant number: K23MH087770; Contract grant sponsor: Leon Levy Foundation; Contract grant sponsor: NIMH award to MPM; Contract grant number: R03MH096321 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation ANR/ANR-10-LABX-57 es_ES
dc.relation ANR/ANR-10-IDEX-03-02 es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R/ES/CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/ es_ES
dc.relation NIH/N01- HD02-3343 es_ES
dc.relation NIH/N01-MH9-0002 es_ES
dc.relation NIH/N01-NS-9-2314 es_ES
dc.relation NIH/N01-NS-9-2315 es_ES
dc.relation NIH/N01-NS-9-2316 es_ES
dc.relation NIH/N01-NS-9-2317 es_ES
dc.relation NIH/N01-NS-9-2319 es_ES
dc.relation NIH/N01-NS-9-2320 es_ES
dc.relation NIH/U01 AG024904 es_ES
dc.relation NIH/P30 AG010129 es_ES
dc.relation NIH/K01 AG030514 es_ES
dc.relation NIH/P50 AG05681 es_ES
dc.relation NIH/P01 AG03991 es_ES
dc.relation NIH/R01 AG021910 es_ES
dc.relation NIH/P50 MH071616 es_ES
dc.relation NIH/U24 RR021382 es_ES
dc.relation NIH/R01 MH56584 es_ES
dc.relation NHMRC/1011689 es_ES
dc.relation EPSRC/GR/S21533/02 es_ES
dc.relation NIMH/K23MH087770 es_ES
dc.relation NIMH/R03MH096321 es_ES
dc.relation NICHD/HHSN275200900018C es_ES
dc.relation Human Brain Project/PO1MHO5217611 es_ES
dc.relation IRSC/MOP34996 es_ES
dc.relation.ispartof Human Brain Mapping es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aging es_ES
dc.subject Maturation es_ES
dc.subject Lifespan es_ES
dc.subject MRI segmentation es_ES
dc.subject Patch-based processing es_ES
dc.subject Brain trajectory es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Towards a Unified Analysis of Brain Maturation and Aging across the Entire Lifespan: A MRI Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/hbm.23743 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Coupé, P.; Catheline, G.; Lanuza, E.; Manjón Herrera, JV. (2017). Towards a Unified Analysis of Brain Maturation and Aging across the Entire Lifespan: A MRI Analysis. Human Brain Mapping. 38(11):5501-5518. https://doi.org/10.1002/hbm.23743 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/hbm.23743 es_ES
dc.description.upvformatpinicio 5501 es_ES
dc.description.upvformatpfin 5518 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 28737295 es_ES
dc.identifier.pmcid PMC6866824 es_ES
dc.relation.pasarela S\355210 es_ES
dc.contributor.funder Dana Foundation es_ES
dc.contributor.funder Human Brain Project es_ES
dc.contributor.funder Leon Levy Foundation es_ES
dc.contributor.funder Alzheimer's Australia es_ES
dc.contributor.funder National Institute on Aging, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Alzheimer's Drug Discovery Foundation es_ES
dc.contributor.funder Canadian Institutes of Health Research es_ES
dc.contributor.funder National Institute on Drug Abuse, EEUU es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder National Institute of Mental Health, EEUU es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder National Health and Medical Research Council, Australia es_ES
dc.contributor.funder Commonwealth Scientific and Industrial Research Organisation es_ES
dc.contributor.funder National Institute of Neurological Disorders and Stroke, EEUU es_ES
dc.contributor.funder National Institute of Child Health and Human Development, EEUU es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.contributor.funder National Institute of Biomedical Imaging and Bioengineering, EEUU es_ES
dc.description.references Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839-851. doi:10.1016/j.neuroimage.2005.02.018 es_ES
dc.description.references Aubert-Broche, B., Fonov, V. S., García-Lorenzo, D., Mouiha, A., Guizard, N., Coupé, P., … Collins, D. L. (2013). A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood. NeuroImage, 82, 393-402. doi:10.1016/j.neuroimage.2013.05.065 es_ES
dc.description.references Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), 2033-2044. doi:10.1016/j.neuroimage.2010.09.025 es_ES
dc.description.references Becker, J. B., & Hu, M. (2008). Sex differences in drug abuse. Frontiers in Neuroendocrinology, 29(1), 36-47. doi:10.1016/j.yfrne.2007.07.003 es_ES
dc.description.references (2011). Total and Regional Brain Volumes in a Population-Based Normative Sample from 4 to 18 Years: The NIH MRI Study of Normal Brain Development. Cerebral Cortex, 22(1), 1-12. doi:10.1093/cercor/bhr018 es_ES
dc.description.references Carne, R. P., Vogrin, S., Litewka, L., & Cook, M. J. (2006). Cerebral cortex: An MRI-based study of volume and variance with age and sex. Journal of Clinical Neuroscience, 13(1), 60-72. doi:10.1016/j.jocn.2005.02.013 es_ES
dc.description.references Coffey, C. E., Lucke, J. F., Saxton, J. A., Ratcliff, G., Unitas, L. J., Billig, B., & Bryan, R. N. (1998). Sex Differences in Brain Aging. Archives of Neurology, 55(2), 169. doi:10.1001/archneur.55.2.169 es_ES
dc.description.references Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins, D. L. (2011). Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage, 54(2), 940-954. doi:10.1016/j.neuroimage.2010.09.018 es_ES
dc.description.references Ducharme, S., Albaugh, M. D., Nguyen, T.-V., Hudziak, J. J., Mateos-Pérez, J. M., Labbe, A., … Karama, S. (2016). Trajectories of cortical thickness maturation in normal brain development — The importance of quality control procedures. NeuroImage, 125, 267-279. doi:10.1016/j.neuroimage.2015.10.010 es_ES
dc.description.references Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313-1317. doi:10.1038/3305 es_ES
dc.description.references Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Walhovd, K. B. (2009). High Consistency of Regional Cortical Thinning in Aging across Multiple Samples. Cerebral Cortex, 19(9), 2001-2012. doi:10.1093/cercor/bhn232 es_ES
dc.description.references Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., … Walhovd, K. B. (2013). Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiology of Aging, 34(10), 2239-2247. doi:10.1016/j.neurobiolaging.2013.04.006 es_ES
dc.description.references Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20-40. doi:10.1016/j.pneurobio.2014.02.004 es_ES
dc.description.references Fox, N. C., Warrington, E. K., Freeborough, P. A., Hartikainen, P., Kennedy, A. M., Stevens, J. M., & Rossor, M. N. (1996). Presymptomatic hippocampal atrophy in Alzheimer’s disease. Brain, 119(6), 2001-2007. doi:10.1093/brain/119.6.2001 es_ES
dc.description.references Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of Pediatric Brain Development: What Have We Learned and Where Are We Going? Neuron, 67(5), 728-734. doi:10.1016/j.neuron.2010.08.040 es_ES
dc.description.references Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861-863. doi:10.1038/13158 es_ES
dc.description.references Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S. K., Knickmeyer, R. C., … Gerig, G. (2007). Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain. Journal of Neuroscience, 27(6), 1255-1260. doi:10.1523/jneurosci.3339-06.2007 es_ES
dc.description.references Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., … Shen, D. (2011). Longitudinal Development of Cortical and Subcortical Gray Matter from Birth to 2 Years. Cerebral Cortex, 22(11), 2478-2485. doi:10.1093/cercor/bhr327 es_ES
dc.description.references Good CD Johnsrude IS Ashburner J Henson RN Fristen KJ Frackowiak RS 2002 es_ES
dc.description.references Green, P. S., & Simpkins, J. W. (2000). Neuroprotective effects of estrogens: potential mechanisms of action. International Journal of Developmental Neuroscience, 18(4-5), 347-358. doi:10.1016/s0736-5748(00)00017-4 es_ES
dc.description.references Groeschel, S., Vollmer, B., King, M. D., & Connelly, A. (2010). Developmental changes in cerebral grey and white matter volume from infancy to adulthood. International Journal of Developmental Neuroscience, 28(6), 481-489. doi:10.1016/j.ijdevneu.2010.06.004 es_ES
dc.description.references Gur, R. C., Mozley, P. D., Resnick, S. M., Gottlieb, G. L., Kohn, M., Zimmerman, R., … Berretta, D. (1991). Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proceedings of the National Academy of Sciences, 88(7), 2845-2849. doi:10.1073/pnas.88.7.2845 es_ES
dc.description.references Hedman, A. M., van Haren, N. E. M., Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. (2011). Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Human Brain Mapping, 33(8), 1987-2002. doi:10.1002/hbm.21334 es_ES
dc.description.references Holland, D., Chang, L., Ernst, T. M., Curran, M., Buchthal, S. D., Alicata, D., … Dale, A. M. (2014). Structural Growth Trajectories and Rates of Change in the First 3 Months of Infant Brain Development. JAMA Neurology, 71(10), 1266. doi:10.1001/jamaneurol.2014.1638 es_ES
dc.description.references Hu, S., Pruessner, J. C., Coupé, P., & Collins, D. L. (2013). Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence. NeuroImage, 74, 276-287. doi:10.1016/j.neuroimage.2013.02.032 es_ES
dc.description.references Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387(2), 167-178. doi:10.1002/(sici)1096-9861(19971020)387:2<167::aid-cne1>3.0.co;2-z es_ES
dc.description.references Jack, C. R., Petersen, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., Tangalos, E. G., … Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49(3), 786-794. doi:10.1212/wnl.49.3.786 es_ES
dc.description.references Jernigan, T. L., Baaré, W. F. C., Stiles, J., & Madsen, K. S. (2011). Postnatal brain development. Gene Expression to Neurobiology and Behavior: Human Brain Development and Developmental Disorders, 77-92. doi:10.1016/b978-0-444-53884-0.00019-1 es_ES
dc.description.references Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage, 60(1), 340-352. doi:10.1016/j.neuroimage.2011.11.094 es_ES
dc.description.references Lenroot, R. K., & Giedd, J. N. (2010). Sex differences in the adolescent brain. Brain and Cognition, 72(1), 46-55. doi:10.1016/j.bandc.2009.10.008 es_ES
dc.description.references Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., … Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36(4), 1065-1073. doi:10.1016/j.neuroimage.2007.03.053 es_ES
dc.description.references Makropoulos, A., Gousias, I. S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J. V., … Rueckert, D. (2014). Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain. IEEE Transactions on Medical Imaging, 33(9), 1818-1831. doi:10.1109/tmi.2014.2322280 es_ES
dc.description.references Makropoulos, A., Aljabar, P., Wright, R., Hüning, B., Merchant, N., Arichi, T., … Rueckert, D. (2016). Regional growth and atlasing of the developing human brain. NeuroImage, 125, 456-478. doi:10.1016/j.neuroimage.2015.10.047 es_ES
dc.description.references Manjón, J. V., & Coupé, P. (2016). volBrain: An Online MRI Brain Volumetry System. Frontiers in Neuroinformatics, 10. doi:10.3389/fninf.2016.00030 es_ES
dc.description.references Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L., & Robles, M. (2009). Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1), 192-203. doi:10.1002/jmri.22003 es_ES
dc.description.references Manjón, J. V., Tohka, J., & Robles, M. (2010). Improved estimates of partial volume coefficients from noisy brain MRI using spatial context. NeuroImage, 53(2), 480-490. doi:10.1016/j.neuroimage.2010.06.046 es_ES
dc.description.references Manjón, J. V., Eskildsen, S. F., Coupé, P., Romero, J. E., Collins, D. L., & Robles, M. (2014). Nonlocal Intracranial Cavity Extraction. International Journal of Biomedical Imaging, 2014, 1-11. doi:10.1155/2014/820205 es_ES
dc.description.references Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J., Crone, E. A., … Tamnes, C. K. (2016). Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. NeuroImage, 141, 273-281. doi:10.1016/j.neuroimage.2016.07.044 es_ES
dc.description.references Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., & Walhovd, K. B. (2009). Heterogeneity in Subcortical Brain Development: A Structural Magnetic Resonance Imaging Study of Brain Maturation from 8 to 30 Years. Journal of Neuroscience, 29(38), 11772-11782. doi:10.1523/jneurosci.1242-09.2009 es_ES
dc.description.references Pfefferbaum, A., Rohlfing, T., Rosenbloom, M. J., Chu, W., Colrain, I. M., & Sullivan, E. V. (2013). Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85years) measured with atlas-based parcellation of MRI. NeuroImage, 65, 176-193. doi:10.1016/j.neuroimage.2012.10.008 es_ES
dc.description.references Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior. Neuron, 48(2), 175-187. doi:10.1016/j.neuron.2005.09.025 es_ES
dc.description.references Poldrack, R. A., & Gorgolewski, K. J. (2014). Making big data open: data sharing in neuroimaging. Nature Neuroscience, 17(11), 1510-1517. doi:10.1038/nn.3818 es_ES
dc.description.references Potvin, O., Mouiha, A., Dieumegarde, L., & Duchesne, S. (2016). Normative data for subcortical regional volumes over the lifetime of the adult human brain. NeuroImage, 137, 9-20. doi:10.1016/j.neuroimage.2016.05.016 es_ES
dc.description.references Potvin, O., Dieumegarde, L., & Duchesne, S. (2017). Freesurfer cortical normative data for adults using Desikan-Killiany-Tourville and ex vivo protocols. NeuroImage, 156, 43-64. doi:10.1016/j.neuroimage.2017.04.035 es_ES
dc.description.references Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., … Giedd, J. N. (2011). How Does Your Cortex Grow? Journal of Neuroscience, 31(19), 7174-7177. doi:10.1523/jneurosci.0054-11.2011 es_ES
dc.description.references Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental Trajectories of the Human Cerebral Cortex. Journal of Neuroscience, 28(14), 3586-3594. doi:10.1523/jneurosci.5309-07.2008 es_ES
dc.description.references Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309-315. doi:10.1038/nn1008 es_ES
dc.description.references Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., … Frisén, J. (2013). Dynamics of Hippocampal Neurogenesis in Adult Humans. Cell, 153(6), 1219-1227. doi:10.1016/j.cell.2013.05.002 es_ES
dc.description.references Stiles, J., & Jernigan, T. L. (2010). The Basics of Brain Development. Neuropsychology Review, 20(4), 327-348. doi:10.1007/s11065-010-9148-4 es_ES
dc.description.references Suzuki, M. (2004). Male-specific Volume Expansion of the Human Hippocampus during Adolescence. Cerebral Cortex, 15(2), 187-193. doi:10.1093/cercor/bhh121 es_ES
dc.description.references Tustison, N. J., Avants, B. B., Cook, P. A., Yuanjie Zheng, Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 29(6), 1310-1320. doi:10.1109/tmi.2010.2046908 es_ES
dc.description.references Van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875), 1030-1034. doi:10.1038/4151030a es_ES
dc.description.references Vijayakumar, N., Allen, N. B., Youssef, G., Dennison, M., Yücel, M., Simmons, J. G., & Whittle, S. (2016). Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Human Brain Mapping, 37(6), 2027-2038. doi:10.1002/hbm.23154 es_ES
dc.description.references Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Fjell, A. M. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 32(5), 916-932. doi:10.1016/j.neurobiolaging.2009.05.013 es_ES
dc.description.references Wang, L., Shi, F., Li, G., Gao, Y., Lin, W., Gilmore, J. H., & Shen, D. (2014). Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage, 84, 141-158. doi:10.1016/j.neuroimage.2013.08.008 es_ES
dc.description.references Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. doi:10.1016/j.neuroimage.2006.01.015 es_ES
dc.description.references Ziegler, G., Dahnke, R., Jäncke, L., Yotter, R. A., May, A., & Gaser, C. (2011). Brain structural trajectories over the adult lifespan. Human Brain Mapping, 33(10), 2377-2389. doi:10.1002/hbm.21374 es_ES


This item appears in the following Collection(s)

Show simple item record