- -

Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic

Show full item record

Aldas-Carrasco, MF.; Ferri, JM.; López-Martínez, J.; Samper, M.; Arrieta, MP. (2020). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic. Journal of Applied Polymer Science. 137(4):1-14. https://doi.org/10.1002/app.48236

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151275

Files in this item

Item Metadata

Title: Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic
Author: Aldas-Carrasco, Miguel Fernando Ferri, J. M. López-Martínez, Juan Samper, María-Dolores Arrieta, Marina Patricia
UPV Unit: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] The effect of three additives derived from pine resin, namely, gum rosin (GR) and two pentaerythritol ester of GR, Lurefor (LF) and Unik Tack (UT), in 5, 10, and 15 wt %, on the properties of Mater-Bi, based on ...[+]
Subjects: Biodegradable polymers , Compatibilizer , Gum rosin , Pine resin derivatives , Plasticizer , Thermoplastic starch
Copyrigths: Reserva de todos los derechos
Source:
Journal of Applied Polymer Science. (issn: 0021-8995 )
DOI: 10.1002/app.48236
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/app.48236
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F122/
Description: "This is the peer reviewed version of the following article: Aldas, M., J. M. Ferri, J. Lopez-Martinez, M. D. Samper, and M. P. Arrieta. 2019. Effect of Pine Resin Derivatives on the Structural, Thermal, and Mechanical Properties of Mater-Bi Type Bioplastic. Journal of Applied Polymer Science 137 (4). Wiley: 48236. doi:10.1002/app.48236, which has been published in final form at https://doi.org/10.1002/app.48236. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
This work was supported by the Spanish Ministry of Economy and Competitiveness, PROMADEPCOL (MAT2017-84909-C2-2-R). M. P. Arrieta thanks Complutense University of Madrid for "Ayudas para la contratacion de personal ...[+]
Type: Artículo

References

Plastics Europe Plastics – the Facts 2018. An analysis of European plastics production demand and waste data” [Online]. Available:https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf(accessed on July 1 2019).

Arrieta, M. P., Peponi, L., López, D., & Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. doi:10.1016/j.indcrop.2017.10.042

Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035 [+]
Plastics Europe Plastics – the Facts 2018. An analysis of European plastics production demand and waste data” [Online]. Available:https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf(accessed on July 1 2019).

Arrieta, M. P., Peponi, L., López, D., & Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. doi:10.1016/j.indcrop.2017.10.042

Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035

Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008

Elfehri Borchani, K., Carrot, C., & Jaziri, M. (2015). Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: Morphology, mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. doi:10.1016/j.compositesa.2015.08.023

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. doi:10.1016/j.polymdegradstab.2016.02.027

Fabra, M. J., López-Rubio, A., Cabedo, L., & Lagaron, J. M. (2016). Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design. Journal of Colloid and Interface Science, 483, 84-92. doi:10.1016/j.jcis.2016.08.021

Makaremi, M., Pasbakhsh, P., Cavallaro, G., Lazzara, G., Aw, Y. K., Lee, S. M., & Milioto, S. (2017). Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Applied Materials & Interfaces, 9(20), 17476-17488. doi:10.1021/acsami.7b04297

Niu, X., Liu, Y., Song, Y., Han, J., & Pan, H. (2018). Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydrate Polymers, 183, 102-109. doi:10.1016/j.carbpol.2017.11.079

Mujica‐Garcia A.;Sonseca A.;Arrieta M. P.;Yusef M.;López D.;Gimenez E.;Kenny J. M.;Peponi L.In Tiwari A. Wang R. Wei B.; Advanced Surface Engineering Materials; Wiley: Massachussets USA 2016.

Sessini, V., Arrieta, M. P., Kenny, J. M., & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168. doi:10.1016/j.polymdegradstab.2016.02.026

Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751

Trovatti, E., Carvalho, A. J. F., & Gandini, A. (2014). A new approach to blending starch with natural rubber. Polymer International, 64(5), 605-610. doi:10.1002/pi.4808

Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8

Azevedo, V. M., Borges, S. V., Marconcini, J. M., Yoshida, M. I., Neto, A. R. S., Pereira, T. C., & Pereira, C. F. G. (2017). Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydrate Polymers, 157, 971-980. doi:10.1016/j.carbpol.2016.10.046

Sessini, V., Raquez, J.-M., Lourdin, D., Maigret, J.-E., Kenny, J. M., Dubois, P., & Peponi, L. (2017). Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromolecular Chemistry and Physics, 218(24), 1700388. doi:10.1002/macp.201700388

Correa, A. C., Carmona, V. B., Simão, J. A., Capparelli Mattoso, L. H., & Marconcini, J. M. (2017). Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties. Carbohydrate Polymers, 167, 177-184. doi:10.1016/j.carbpol.2017.03.051

Lendvai, L., Apostolov, A., & Karger-Kocsis, J. (2017). Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 173, 566-572. doi:10.1016/j.carbpol.2017.05.100

Mikus, P.-Y., Alix, S., Soulestin, J., Lacrampe, M. F., Krawczak, P., Coqueret, X., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450-457. doi:10.1016/j.carbpol.2014.06.087

Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025

Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009

Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152

Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513

Rodríguez-García, A., Martín, J. A., López, R., Sanz, A., & Gil, L. (2016). Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Industrial Crops and Products, 86, 143-154. doi:10.1016/j.indcrop.2016.03.033

Sharma, L., & Singh, C. (2016). Composite film developed from the blends of sesame protein isolate and gum rosin and their properties thereof. Polymer Composites, 39(5), 1480-1487. doi:10.1002/pc.24088

Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557

Yu, C., Chen, C., Gong, Q., & Zhang, F.-A. (2012). Preparation of polymer microspheres with a rosin moiety from rosin ester, styrene and divinylbenzene. Polymer International, 61(11), 1619-1626. doi:10.1002/pi.4249

Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296d

Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F., & Ruisi, F. (2017). Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods. Cellulose, 24(8), 3367-3376. doi:10.1007/s10570-017-1369-8

Marina P. Arrieta, Juan López, Santiago Ferrándiz, & Mercedes A. Peltzer. (2015). EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, (1065), 719-725. doi:10.17660/actahortic.2015.1065.90

Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009

Liu, X. Q., Huang, W., Jiang, Y. H., Zhu, J., & Zhang, C. Z. (2012). Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polymer Letters, 6(4), 293-298. doi:10.3144/expresspolymlett.2012.32

International Standards Organization ISO 527‐1:2012 ‐ Plastics ‐ Determination of tensile properties ‐ Part 1: General 2012.

Sessini, V., Raquez, J.-M., Lo Re, G., Mincheva, R., Kenny, J. M., Dubois, P., & Peponi, L. (2016). Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Applied Materials & Interfaces, 8(30), 19197-19201. doi:10.1021/acsami.6b06618

Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886

International Standards Organization ISO 178:2010 ‐ Plastics ‐ Determination of flexural propertie 2010.

International Standards Organization ISO 179:2010 ‐ Plastics ‐ Determination of charpy impact properties 2010.

International Standards Organization ISO 868:2003 ‐ Plastics and ebonite ‐ Determination of indentation hardness by means of a durometer (Shore hardness) 2003.

Jost, V. (2018). Packaging related properties of commercially available biopolymers – An overview of the status quo. Express Polymer Letters, 12(5), 429-435. doi:10.3144/expresspolymlett.2018.36

International Standards Organization ISO 75‐1:2013 ‐ Plastics ‐ Determination of temperature of deflection under load ‐ Part 1: General test method 2013.

Mok, S. L., Kwong, C. K., & Lau, W. S. (2001). A Hybrid Neural Network and Genetic Algorithm Approach to the Determination of Initial Process Parameters for Injection Moulding. The International Journal of Advanced Manufacturing Technology, 18(6), 404-409. doi:10.1007/s001700170050

Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028

Bastioli, C., Cerutti, A., Guanella, I., Romano, G. C., & Tosin, M. (1995). Physical state and biodegradation behavior of starch-polycaprolactone systems. Journal of Environmental Polymer Degradation, 3(2), 81-95. doi:10.1007/bf02067484

Esmaeili, M., Pircheraghi, G., & Bagheri, R. (2017). Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. Polymer International, 66(6), 809-819. doi:10.1002/pi.5319

Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Journal of Materials Science: Materials in Medicine, 14(2), 127-135. doi:10.1023/a:1022015712170

Khan, G., Yadav, S. K., Patel, R. R., Kumar, N., Bansal, M., & Mishra, B. (2017). Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: Development, optimization and its clinical implications. International Journal of Biological Macromolecules, 103, 1311-1326. doi:10.1016/j.ijbiomac.2017.05.161

Arrieta, M. P., & Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. doi:10.1016/j.eurpolymj.2017.02.028

Jindal, R., Sharma, R., Maiti, M., Kaur, A., Sharma, P., Mishra, V., & Jana, A. K. (2016). Synthesis and characterization of novel reduced Gum rosin-acrylamide copolymer-based nanogel and their investigation for antibacterial activity. Polymer Bulletin, 74(8), 2995-3014. doi:10.1007/s00289-016-1877-y

Singh, V., Joshi, S., & Malviya, T. (2018). Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. International Journal of Biological Macromolecules, 112, 390-398. doi:10.1016/j.ijbiomac.2018.01.184

Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018

Peponi, L., Sessini, V., Arrieta, M. P., Navarro-Baena, I., Sonseca, A., Dominici, F., … Kenny, J. M. (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 151, 36-51. doi:10.1016/j.polymdegradstab.2018.02.019

Muthuraj, R., Misra, M., & Mohanty, A. K. (2015). Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. Journal of Applied Polymer Science, 132(27), n/a-n/a. doi:10.1002/app.42189

Signori, F., Coltelli, M.-B., & Bronco, S. (2009). Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 94(1), 74-82. doi:10.1016/j.polymdegradstab.2008.10.004

Navarro-Baena, I., Arrieta, M. P., Sonseca, A., Torre, L., López, D., Giménez, E., … Peponi, L. (2015). Biodegradable nanocomposites based on poly(ester-urethane) and nanosized hydroxyapatite: Plastificant and reinforcement effects. Polymer Degradation and Stability, 121, 171-179. doi:10.1016/j.polymdegradstab.2015.09.002

Salgado, C., Arrieta, M. P., Peponi, L., Fernández-García, M., & López, D. (2016). Influence of Poly(ε-caprolactone) Molecular Weight and Coumarin Amount on Photo-Responsive Polyurethane Properties. Macromolecular Materials and Engineering, 302(4), 1600515. doi:10.1002/mame.201600515

Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079

Cerruti, P., Santagata, G., Gomez d’Ayala, G., Ambrogi, V., Carfagna, C., Malinconico, M., & Persico, P. (2011). Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polymer Degradation and Stability, 96(5), 839-846. doi:10.1016/j.polymdegradstab.2011.02.003

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record