- -

Mechanical and Shape-Memory Properties of Poly(mannitol sebacate)/Cellulose Nanocrystal Nanocomposites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechanical and Shape-Memory Properties of Poly(mannitol sebacate)/Cellulose Nanocrystal Nanocomposites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sonseca, Agueda es_ES
dc.contributor.author Camarero-Espinosa, Sandra es_ES
dc.contributor.author Peponi, Laura es_ES
dc.contributor.author Weder, Christoph es_ES
dc.contributor.author Foster, E.J. es_ES
dc.contributor.author Kenny, José M. es_ES
dc.contributor.author Giménez Torres, Enrique es_ES
dc.date.accessioned 2020-10-07T03:33:40Z
dc.date.available 2020-10-07T03:33:40Z
dc.date.issued 2014-11-01 es_ES
dc.identifier.issn 0887-624X es_ES
dc.identifier.uri http://hdl.handle.net/10251/151281
dc.description "This is the peer reviewed version of the following article: Sonseca, Á., Camarero‐Espinosa, S., Peponi, L., Weder, C., Foster, E. J., Kenny, J. M., & Giménez, E. (2014). Mechanical and shape‐memory properties of poly (mannitol sebacate)/cellulose nanocrystal nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry, 52(21), 3123-3133., which has been published in final form at https://doi.org/10.1002/pola.27367. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Polyesters based on polyols and sebacic acid, known as poly(polyol sebacate)s (PPS), are attracting considerable attention, as their properties are potentially useful in the context of soft-tissue engineering applications. To overcome the drawback that PPSs generally display rather low strength and stiffness, we have pursued the preparation of nano composites based poly(mannitol sebacate) (PMS), a prominent example of this materials family, with cellulose nanocrystals (CNCs). Nanocomposites were achieved in a two-step process. A soluble, low-molecular-weight PMS pre-polymer was formed via the polycondensation reaction between sebacic acid and D-mannitol. Nanocomposites with different CNC content were prepared by solution-casting and curing under vacuum using two different profiles designed to prepare materials with low and high degree of crosslinking. The as-prepared nano composites have higher stiffness and toughness than the neat PMS matrix while maintaining a high elongation at break. A highly crosslinked nanocomposite with a CNC content of 5 wt % displays a sixfold increase in Young s modulus and a fivefold improvement in toughness. Nanocomposites also exhibit a shape memory effect with a switch temperature in the range of 15 to 45 C; in particular the materials with a thermal transition in the upper part of this range are potentially useful for biomedical applications es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support received from Spanish Ministry of Economy and Competitiveness (Project MAT2010/21494-C03), as well as the support of FPU grant from MED (MED-FPU; AP2009-2482), JAE-Doc grant (CSIC co-financed by FSE), Swiss National Science foundation (National Research Programme 64, Project #406440_131264/1) and the Adolphe Merkle Foundation. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Polymer Science Part A Polymer Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cellulose nanocrystals es_ES
dc.subject Mechanical properties es_ES
dc.subject Nanocomposites es_ES
dc.subject Nanoparticles es_ES
dc.subject Poly(polyol sebacate) es_ES
dc.subject Shape memory es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Mechanical and Shape-Memory Properties of Poly(mannitol sebacate)/Cellulose Nanocrystal Nanocomposites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pola.27367 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//406440_131264/CH/Cellulose-based nanocomposite building materials: solutions and toxicity/
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2009-2482/ES/AP2009-2482/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21494-C03-01/ES/DESARROLLO DE ESPUMAS Y SISTEMAS RIGIDOS CON MEMORIA DE FORMA BASADOS EN NANOCOMPUESTOS BIODEGRADABLES NANONOESTRUCTURADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Sonseca, A.; Camarero-Espinosa, S.; Peponi, L.; Weder, C.; Foster, E.; Kenny, JM.; Giménez Torres, E. (2014). Mechanical and Shape-Memory Properties of Poly(mannitol sebacate)/Cellulose Nanocrystal Nanocomposites. Journal of Polymer Science Part A Polymer Chemistry. 52(21):3123-3133. https://doi.org/10.1002/pola.27367 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/pola.27367 es_ES
dc.description.upvformatpinicio 3123 es_ES
dc.description.upvformatpfin 3133 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 21 es_ES
dc.relation.pasarela S\283006 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Adolphe Merkle Foundation es_ES
dc.contributor.funder Swiss National Science Foundation es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bruggeman, J. P., de Bruin, B.-J., Bettinger, C. J., & Langer, R. (2008). Biodegradable poly(polyol sebacate) polymers. Biomaterials, 29(36), 4726-4735. doi:10.1016/j.biomaterials.2008.08.037 es_ES
dc.description.references Li, Y., Thouas, G. A., & Chen, Q.-Z. (2012). Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds. RSC Advances, 2(22), 8229. doi:10.1039/c2ra20736b es_ES
dc.description.references Yang, J., Webb, A. R., Pickerill, S. J., Hageman, G., & Ameer, G. A. (2006). Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials, 27(9), 1889-1898. doi:10.1016/j.biomaterials.2005.05.106 es_ES
dc.description.references Yang, J., Webb, A. R., & Ameer, G. A. (2004). Novel Citric Acid-Based Biodegradable Elastomers for Tissue Engineering. Advanced Materials, 16(6), 511-516. doi:10.1002/adma.200306264 es_ES
dc.description.references Park, H., Seo, J., Lee, H.-Y., Kim, H.-W., Wall, I. B., Gong, M.-S., & Knowles, J. C. (2012). Synthesis of elastic biodegradable polyesters of ethylene glycol and butylene glycol from sebacic acid. Acta Biomaterialia, 8(8), 2911-2918. doi:10.1016/j.actbio.2012.04.026 es_ES
dc.description.references Sun, Z.-J., Wu, L., Lu, X.-L., Meng, Z.-X., Zheng, Y.-F., & Dong, D.-L. (2008). The characterization of mechanical and surface properties of poly (glycerol–sebacate–lactic acid) during degradation in phosphate buffered saline. Applied Surface Science, 255(2), 350-352. doi:10.1016/j.apsusc.2008.06.157 es_ES
dc.description.references Liu, Q., Tan, T., Weng, J., & Zhang, L. (2009). Study on the control of the compositions and properties of a biodegradable polyester elastomer. Biomedical Materials, 4(2), 025015. doi:10.1088/1748-6041/4/2/025015 es_ES
dc.description.references SUNDBACK, C., SHYU, J., WANG, Y., FAQUIN, W., LANGER, R., VACANTI, J., & HADLOCK, T. (2005). Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 26(27), 5454-5464. doi:10.1016/j.biomaterials.2005.02.004 es_ES
dc.description.references Sun, Z.-J., Chen, C., Sun, M.-Z., Ai, C.-H., Lu, X.-L., Zheng, Y.-F., … Dong, D.-L. (2009). The application of poly (glycerol–sebacate) as biodegradable drug carrier. Biomaterials, 30(28), 5209-5214. doi:10.1016/j.biomaterials.2009.06.007 es_ES
dc.description.references Mahdavi, A., Ferreira, L., Sundback, C., Nichol, J. W., Chan, E. P., Carter, D. J. D., … Karp, J. M. (2008). A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences, 105(7), 2307-2312. doi:10.1073/pnas.0712117105 es_ES
dc.description.references Motlagh, D., Yang, J., Lui, K. Y., Webb, A. R., & Ameer, G. A. (2006). Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 27(24), 4315-4324. doi:10.1016/j.biomaterials.2006.04.010 es_ES
dc.description.references Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602-606. doi:10.1038/nbt0602-602 es_ES
dc.description.references Jaafar, I. H., Ammar, M. M., Jedlicka, S. S., Pearson, R. A., & Coulter, J. P. (2010). Spectroscopic evaluation, thermal, and thermomechanical characterization of poly(glycerol-sebacate) with variations in curing temperatures and durations. Journal of Materials Science, 45(9), 2525-2529. doi:10.1007/s10853-010-4259-0 es_ES
dc.description.references Chen, Q.-Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M. Q., Harding, S. E., … Boccaccini, A. R. (2008). Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 29(1), 47-57. doi:10.1016/j.biomaterials.2007.09.010 es_ES
dc.description.references Liang, S.-L., Cook, W. D., Thouas, G. A., & Chen, Q.-Z. (2010). The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials, 31(33), 8516-8529. doi:10.1016/j.biomaterials.2010.07.105 es_ES
dc.description.references Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M., & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Progress in Materials Science, 53(1), 1-206. doi:10.1016/j.pmatsci.2007.05.002 es_ES
dc.description.references Sastri, V. R. (2010). Other Polymers. Plastics in Medical Devices, 217-262. doi:10.1016/b978-0-8155-2027-6.10009-1 es_ES
dc.description.references Chen, Q.-Z., Liang, S.-L., Wang, J., & Simon, G. P. (2011). Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 4(8), 1805-1818. doi:10.1016/j.jmbbm.2011.05.038 es_ES
dc.description.references Liu, Q., Wu, J., Tan, T., Zhang, L., Chen, D., & Tian, W. (2009). Preparation, properties and cytotoxicity evaluation of a biodegradable polyester elastomer composite. Polymer Degradation and Stability, 94(9), 1427-1435. doi:10.1016/j.polymdegradstab.2009.05.023 es_ES
dc.description.references Chen, Q., Jin, L., Cook, W. D., Mohn, D., Lagerqvist, E. L., Elliott, D. A., … Elefanty, A. G. (2010). Elastomeric nanocomposites as cell delivery vehicles and cardiac support devices. Soft Matter, 6(19), 4715. doi:10.1039/c0sm00213e es_ES
dc.description.references Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., … Peijs, T. (2010). Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1-33. doi:10.1007/s10853-009-3874-0 es_ES
dc.description.references Clift, M. J. D., Foster, E. J., Vanhecke, D., Studer, D., Wick, P., Gehr, P., … Weder, C. (2011). Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture. Biomacromolecules, 12(10), 3666-3673. doi:10.1021/bm200865j es_ES
dc.description.references Mendez, J., Annamalai, P. K., Eichhorn, S. J., Rusli, R., Rowan, S. J., Foster, E. J., & Weder, C. (2011). Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect. Macromolecules, 44(17), 6827-6835. doi:10.1021/ma201502k es_ES
dc.description.references Hsu, L., Weder, C., & Rowan, S. J. (2011). Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem., 21(9), 2812-2822. doi:10.1039/c0jm02383c es_ES
dc.description.references Azizi Samir, M. A. S., Alloin, F., Sanchez, J.-Y., & Dufresne, A. (2004). Cross-Linked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers. Macromolecules, 37(13), 4839-4844. doi:10.1021/ma049504y es_ES
dc.description.references Goetz, L., Foston, M., Mathew, A. P., Oksman, K., & Ragauskas, A. J. (2010). Poly(methyl vinyl ether-co-maleic acid)−Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers. Biomacromolecules, 11(10), 2660-2666. doi:10.1021/bm1006695 es_ES
dc.description.references Rusli, R., & Eichhorn, S. J. (2008). Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Applied Physics Letters, 93(3), 033111. doi:10.1063/1.2963491 es_ES
dc.description.references Šturcová, A., Davies, G. R., & Eichhorn, S. J. (2005). Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers. Biomacromolecules, 6(2), 1055-1061. doi:10.1021/bm049291k es_ES
dc.description.references De Souza Lima, M. M., Wong, J. T., Paillet, M., Borsali, R., & Pecora, R. (2003). Translational and Rotational Dynamics of Rodlike Cellulose Whiskers. Langmuir, 19(1), 24-29. doi:10.1021/la020475z es_ES
dc.description.references Sun, C. (Calvin). (2005). True Density of Microcrystalline Cellulose. Journal of Pharmaceutical Sciences, 94(10), 2132-2134. doi:10.1002/jps.20459 es_ES
dc.description.references Kokubo, T., Kim, H.-M., & Kawashita, M. (2003). Novel bioactive materials with different mechanical properties. Biomaterials, 24(13), 2161-2175. doi:10.1016/s0142-9612(03)00044-9 es_ES
dc.description.references Bellantone, M., Williams, H. D., & Hench, L. L. (2002). Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass. Antimicrobial Agents and Chemotherapy, 46(6), 1940-1945. doi:10.1128/aac.46.6.1940-1945.2002 es_ES
dc.description.references Lecouvet, B., Horion, J., D’Haese, C., Bailly, C., & Nysten, B. (2013). Elastic modulus of halloysite nanotubes. Nanotechnology, 24(10), 105704. doi:10.1088/0957-4484/24/10/105704 es_ES
dc.description.references Prashantha, K., Lacrampe, M. F., & Krawczak, P. (2011). Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters, 5(4), 295-307. doi:10.3144/expresspolymlett.2011.30 es_ES
dc.description.references Yakobson, B. I., & Avouris, P. (s. f.). Mechanical Properties of Carbon Nanotubes. Carbon Nanotubes, 287-327. doi:10.1007/3-540-39947-x_12 es_ES
dc.description.references Lu, Q., Keskar, G., Ciocan, R., Rao, R., Mathur, R. B., Rao, A. M., & Larcom, L. L. (2006). Determination of Carbon Nanotube Density by Gradient Sedimentation. The Journal of Physical Chemistry B, 110(48), 24371-24376. doi:10.1021/jp063660k es_ES
dc.description.references Gardner, D. J., Oporto, G. S., Mills, R., & Samir, M. A. S. A. (2008). Adhesion and Surface Issues in Cellulose and Nanocellulose. Journal of Adhesion Science and Technology, 22(5-6), 545-567. doi:10.1163/156856108x295509 es_ES
dc.description.references Koerner, H., Price, G., Pearce, N. A., Alexander, M., & Vaia, R. A. (2004). Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Materials, 3(2), 115-120. doi:10.1038/nmat1059 es_ES
dc.description.references Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter, M., Rowan, S. J., Tyler, D. J., & Weder, C. (2007). A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2(12), 765-769. doi:10.1038/nnano.2007.379 es_ES
dc.description.references Dong, X. M., Kimura, T., Revol, J.-F., & Gray, D. G. (1996). Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites. Langmuir, 12(8), 2076-2082. doi:10.1021/la950133b es_ES
dc.description.references Braun, B., & Dorgan, J. R. (2009). Single-Step Method for the Isolation and Surface Functionalization of Cellulosic Nanowhiskers. Biomacromolecules, 10(2), 334-341. doi:10.1021/bm8011117 es_ES
dc.description.references Camarero Espinosa, S., Kuhnt, T., Foster, E. J., & Weder, C. (2013). Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules, 14(4), 1223-1230. doi:10.1021/bm400219u es_ES
dc.description.references Le Cam, E., Frechon, D., Barray, M., Fourcade, A., & Delain, E. (1994). Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes. Proceedings of the National Academy of Sciences, 91(25), 11816-11820. doi:10.1073/pnas.91.25.11816 es_ES
dc.description.references Behl, M., & Lendlein, A. (2007). Shape-memory polymers. Materials Today, 10(4), 20-28. doi:10.1016/s1369-7021(07)70047-0 es_ES
dc.description.references Wagermaier, W., Kratz, K., Heuchel, M., & Lendlein, A. (2009). Characterization Methods for Shape-Memory Polymers. Advances in Polymer Science, 97-145. doi:10.1007/12_2009_25 es_ES
dc.description.references Ratna, D., & Karger-Kocsis, J. (2007). Recent advances in shape memory polymers and composites: a review. Journal of Materials Science, 43(1), 254-269. doi:10.1007/s10853-007-2176-7 es_ES
dc.description.references Yakacki, C. M., & Gall, K. (2009). Shape-Memory Polymers for Biomedical Applications. Advances in Polymer Science, 147-175. doi:10.1007/12_2009_23 es_ES
dc.description.references Maliger, R., Halley, P. J., & Cooper-White, J. J. (2012). Poly(glycerol-sebacate) bioelastomers-kinetics of step-growth reactions using Fourier Transform (FT)-Raman spectroscopy. Journal of Applied Polymer Science, 127(5), 3980-3986. doi:10.1002/app.37719 es_ES
dc.description.references Chen, Q. (2012). Poly(Polyol Sebacate)-Based Elastomeric Nanobiomaterials for Soft Tissue Engineering. Biomedical Materials and Diagnostic Devices, 529-560. doi:10.1002/9781118523025.ch17 es_ES
dc.description.references Filpponen, I., & Argyropoulos, D. S. (2008). Determination of Cellulose Reactivity by Using Phosphitylation and Quantitative31P NMR Spectroscopy. Industrial & Engineering Chemistry Research, 47(22), 8906-8910. doi:10.1021/ie800936x es_ES
dc.description.references Patel, A., Gaharwar, A. K., Iviglia, G., Zhang, H., Mukundan, S., Mihaila, S. M., … Khademhosseini, A. (2013). Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials, 34(16), 3970-3983. doi:10.1016/j.biomaterials.2013.01.045 es_ES
dc.description.references Pei, A., Malho, J.-M., Ruokolainen, J., Zhou, Q., & Berglund, L. A. (2011). Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals. Macromolecules, 44(11), 4422-4427. doi:10.1021/ma200318k es_ES
dc.description.references Tien, Y. I., & Wei, K. H. (2001). High-Tensile-Property Layered Silicates/Polyurethane Nanocomposites by Using Reactive Silicates as Pseudo Chain Extenders. Macromolecules, 34(26), 9045-9052. doi:10.1021/ma010551p es_ES
dc.description.references Hood, M. A., Gold, C. S., Beyer, F. L., Sands, J. M., & Li, C. Y. (2013). Extraordinarily high plastic deformation in polyurethane/silica nanoparticle nanocomposites with low filler concentrations. Polymer, 54(24), 6510-6515. doi:10.1016/j.polymer.2013.10.010 es_ES
dc.description.references Shanmuganathan, K., Capadona, J. R., Rowan, S. J., & Weder, C. (2010). Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. J. Mater. Chem., 20(1), 180-186. doi:10.1039/b916130a es_ES
dc.description.references Abdullah, S. A., Jumahat, A., Abdullah, N. R., & Frormann, L. (2012). Determination of Shape Fixity and Shape Recovery Rate of Carbon Nanotube-filled Shape Memory Polymer Nanocomposites. Procedia Engineering, 41, 1641-1646. doi:10.1016/j.proeng.2012.07.362 es_ES
dc.description.references Nelson, B. A., King, W. P., & Gall, K. (2005). Shape recovery of nanoscale imprints in a thermoset «shape memory» polymer. Applied Physics Letters, 86(10), 103108. doi:10.1063/1.1868883 es_ES
dc.description.references Meng, Q., Hu, J., & Zhu, Y. (2007). Shape-memory polyurethane/multiwalled carbon nanotube fibers. Journal of Applied Polymer Science, 106(2), 837-848. doi:10.1002/app.26517 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem