Mostrar el registro sencillo del ítem
dc.contributor.author | Pekas, Apostolos | es_ES |
dc.contributor.author | Tena Barreda, Alejandro | es_ES |
dc.contributor.author | Harvey, J.A. | es_ES |
dc.contributor.author | Garcia Marí, Ferran | es_ES |
dc.contributor.author | Frago, Enric | es_ES |
dc.date.accessioned | 2020-10-07T03:33:57Z | |
dc.date.available | 2020-10-07T03:33:57Z | |
dc.date.issued | 2016-05 | es_ES |
dc.identifier.issn | 0012-9658 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151285 | |
dc.description.abstract | [EN] Many insect parasitoids are highly specialized and thus develop on only one or a few related host species, yet some hosts are attacked by many different parasitoid species in nature. For this reason, they have been often used to examine the consequences of competitive interactions. Hosts represent limited resources for larval parasitoid development and thus one competitor usually excludes all others. Although parasitoid competition has been debated and studied over the past several decades, understanding the factors that allow for coexistence among species sharing the same host in the field remains elusive. Parasitoids may be able to coexist on the same host species if they partition host resources according to size, age, or stage, or if their dynamics vary at spatial and temporal scales. One area that has thus far received little experimental attention is if competition can alter host usage strategies in parasitoids that in the absence of competitors attack hosts of the same size in the field. Here, we test this hypothesis with two parasitoid species in the genus Aphytis, both of which are specialized on the citrus pest California red scale Aonidiella aurantii. These parasitoids prefer large scales as hosts and yet coexist in sympatry in eastern parts of Spain. Parasitoids and hosts were sampled in 12 replicated orange groves. When host exploitation by the stronger competitor, A. melinus, was high the poorer competitor, A. chrysomphali, changed its foraging strategy to prefer alternative plant substrates where it parasitized hosts of smaller size. Consequently, the inferior parasitoid species shifted both its habitat and host size as a result of competition. Our results suggest that density-dependent size-mediated asymmetric competition is the likely mechanism allowing for the coexistence of these two species, and that the use of suboptimal (small) hosts can be advantageous under conditions imposed by competition where survival in higher quality larger hosts may be greatly reduced. | es_ES |
dc.description.sponsorship | We would like to thank Amparo Aguilar for her valuable help in the field and in the laboratory, and Camille Ponzio for her comments on an earlier version of the manuscript. We are also grateful to three anonymous reviewers and Jay Rosenheim for their helpful comments. This work was supported by the project AGL2005-07155-C03-03 assigned to F. Garcia-Mari from the Ministerio de Educacion y Ciencia of Spain. E. Frago was funded by Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (FP7-PEOPLE-2012-IEF #329648). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Ecological Society of America | es_ES |
dc.relation.ispartof | Ecology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aphytis | es_ES |
dc.subject | California red scale | es_ES |
dc.subject | Competitive exclusion | es_ES |
dc.subject | Host quality | es_ES |
dc.subject | Host-parasitoid interactions | es_ES |
dc.subject | Interspecific competition | es_ES |
dc.subject | Intraguild interactions | es_ES |
dc.subject | Size-mediated interactions | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1890/15-0118.1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/329648/EU/The role of insect symbionts in host plant use through their effect on plant-induced defenses/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2005-07155-C03-03/ES/CONTROL BIOLOGICO Y UMBRALES DE TRATAMIENTO DEL PIOJO ROJO DE CALIFORNIA AONIDIELLA AURANTII (HOMOPTERA: DIASPIDIDAE) EN CITRICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.description.bibliographicCitation | Pekas, A.; Tena Barreda, A.; Harvey, J.; Garcia Marí, F.; Frago, E. (2016). Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology. 97(5):1345-1356. https://doi.org/10.1890/15-0118.1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1890/15-0118.1 | es_ES |
dc.description.upvformatpinicio | 1345 | es_ES |
dc.description.upvformatpfin | 1356 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 97 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.pmid | 27349108 | es_ES |
dc.relation.pasarela | S\324340 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters, 6(12), 1109-1122. doi:10.1046/j.1461-0248.2003.00530.x | es_ES |
dc.description.references | Bates , D. M. Maechler B. Bolker S. Walker 2014 lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7 http://CRAN.R-project.org/package=lme4 | es_ES |
dc.description.references | Bogran, C. E., Heinz, K. M., & Ciomperlik, M. A. (2002). Interspecific Competition among Insect Parasitoids: Field Experiments with Whiteflies as Hosts in Cotton. Ecology, 83(3), 653. doi:10.2307/3071871 | es_ES |
dc.description.references | Bonsall, M. B., & Hassell, M. P. (1999). Parasitoid-mediated effects: apparent competition and the persistence of host–parasitoid assemblages. Researches on Population Ecology, 41(1), 59-68. doi:10.1007/pl00011983 | es_ES |
dc.description.references | Borer, E. T. (2002). Intraguild predation in larval parasitoids: implications for coexistence. Journal of Animal Ecology, 71(6), 957-965. doi:10.1046/j.1365-2656.2002.00660.x | es_ES |
dc.description.references | Borer, E. T., Briggs, C. J., Murdoch, W. W., & Swarbrick, S. L. (2003). Testing intraguild predation theory in a field system: does numerical dominance shift along a gradient of productivity? Ecology Letters, 6(10), 929-935. doi:10.1046/j.1461-0248.2003.00515.x | es_ES |
dc.description.references | Borer, E. T., Murdoch, W. W., & Swarbrick, S. L. (2004). PARASITOID COEXISTENCE: LINKING SPATIAL FIELD PATTERNS WITH MECHANISM. Ecology, 85(3), 667-678. doi:10.1890/02-0566 | es_ES |
dc.description.references | Briggs, C. J. (1993). Competition Among Parasitoid Species on a Stage-Structured Host and Its Effect on Host Suppression. The American Naturalist, 141(3), 372-397. doi:10.1086/285479 | es_ES |
dc.description.references | Brown, W. L., & Wilson, E. O. (1956). Character Displacement. Systematic Zoology, 5(2), 49. doi:10.2307/2411924 | es_ES |
dc.description.references | Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T., & van den Assem, J. (1981). Sex ratio evolution in a variable environment. Nature, 289(5793), 27-33. doi:10.1038/289027a0 | es_ES |
dc.description.references | Chesson, P. (2000). Mechanisms of Maintenance of Species Diversity. Annual Review of Ecology and Systematics, 31(1), 343-366. doi:10.1146/annurev.ecolsys.31.1.343 | es_ES |
dc.description.references | Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application. doi:10.1017/cbo9780511802843 | es_ES |
dc.description.references | De Moraes, C. M., Cortesero, A. M., Stapel, J. O., & Lewis, W. J. (1999). Intrinsic and extrinsic competitive interactions between two larval parasitoids of Heliothis virescens. Ecological Entomology, 24(4), 402-410. doi:10.1046/j.1365-2311.1999.00212.x | es_ES |
dc.description.references | DeBach, P. (1966). The Competitive Displacement and Coexistence Principles. Annual Review of Entomology, 11(1), 183-212. doi:10.1146/annurev.en.11.010166.001151 | es_ES |
dc.description.references | DeBach, P., & Sisojevic, P. (1960). Some Effects of Temperature and Competition on the Distribution and Relative Abundance of Aphytis Lingnanensis and A. Chrysomphali (Hymenoptera: Aphelinidae). Ecology, 41(1), 153-160. doi:10.2307/1931948 | es_ES |
dc.description.references | DeBach, P., & Sundby, R. A. (1963). Competitive displacement between ecological homologues. Hilgardia, 34(5), 105-166. doi:10.3733/hilg.v34n05p105 | es_ES |
dc.description.references | Dunham, A. E. (1980). An Experimental Study of Interspecific Competition Between the Iguanid Lizards Sceloporus Merriami and Urosaurus Ornatus. Ecological Monographs, 50(3), 309-330. doi:10.2307/2937254 | es_ES |
dc.description.references | Frago, E., Pujade-Villar, J., Guara, M., & Selfa, J. (2012). Hyperparasitism and seasonal patterns of parasitism as potential causes of low top-down control in Euproctis chrysorrhoea L. (Lymantriidae). Biological Control, 60(2), 123-131. doi:10.1016/j.biocontrol.2011.11.013 | es_ES |
dc.description.references | Godfray, H. C. J. (1994). Parasitoids. doi:10.1515/9780691207025 | es_ES |
dc.description.references | Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T., & Fox, J. A. (2005). Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters, 8(10), 1114-1127. doi:10.1111/j.1461-0248.2005.00812.x | es_ES |
dc.description.references | Hardin, G. (1960). The Competitive Exclusion Principle. Science, 131(3409), 1292-1297. doi:10.1126/science.131.3409.1292 | es_ES |
dc.description.references | Harvey, J. A. (2005). Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomologia Experimentalis et Applicata, 117(1), 1-13. doi:10.1111/j.1570-7458.2005.00348.x | es_ES |
dc.description.references | Harvey, J. A., Bezemer, T. M., Elzinga, J. A., & Strand, M. R. (2004). Development of the solitary endoparasitoidMicroplitis demolitor: host quality does not increase with host age and size. Ecological Entomology, 29(1), 35-43. doi:10.1111/j.0307-6946.2004.00568.x | es_ES |
dc.description.references | Harvey, J. A., Poelman, E. H., & Tanaka, T. (2013). Intrinsic Inter- and Intraspecific Competition in Parasitoid Wasps. Annual Review of Entomology, 58(1), 333-351. doi:10.1146/annurev-ento-120811-153622 | es_ES |
dc.description.references | Luck, R. F., & Podoler, H. (1985). Competitive Exclusion of Aphytis lingnanensis by A. melinus: Potential Role of Host Size. Ecology, 66(3), 904-913. doi:10.2307/1940553 | es_ES |
dc.description.references | MAGDARAOG, P. M., HARVEY, J. A., TANAKA, T., & GOLS, R. (2012). Intrinsic competition among solitary and gregarious endoparasitoid wasps and the phenomenon of ‘resource sharing’. Ecological Entomology, 37(1), 65-74. doi:10.1111/j.1365-2311.2011.01338.x | es_ES |
dc.description.references | May, R. M., & Hassell, M. P. (1981). The Dynamics of Multiparasitoid-Host Interactions. The American Naturalist, 117(3), 234-261. doi:10.1086/283704 | es_ES |
dc.description.references | Mills, N. J., & Getz, W. M. (1996). Modelling the biological control of insect pests: a review of host-parasitoid models. Ecological Modelling, 92(2-3), 121-143. doi:10.1016/0304-3800(95)00177-8 | es_ES |
dc.description.references | Moreno, D. S., & Luck, R. F. (1992). Augmentative Releases of Aphytis melinus (Hymenoptera: Aphelinidae) To Suppress California Red Scale (Homoptera: Diaspididae) in Southern California Lemon Orchards. Journal of Economic Entomology, 85(4), 1112-1119. doi:10.1093/jee/85.4.1112 | es_ES |
dc.description.references | Morin, P. J. (2011). Community Ecology. doi:10.1002/9781444341966 | es_ES |
dc.description.references | Murdoch, W. W., Luck, R. F., Walde, S. J., Reeve, J. D., & Yu, D. S. (1989). A Refuge for Red Scale Under Control by Aphytis: Structural Aspects. Ecology, 70(6), 1707-1714. doi:10.2307/1938105 | es_ES |
dc.description.references | Murdoch, W. W., Briggs, C. J., & Nisbet, R. M. (1996). Competitive Displacement and Biological Control in Parasitoids: A Model. The American Naturalist, 148(5), 807-826. doi:10.1086/285957 | es_ES |
dc.description.references | Pekas, A., Aguilar, A., Tena, A., & Garcia-Marí, F. (2010). Influence of host size on parasitism by Aphytis chrysomphali and A. melinus (Hymenoptera: Aphelinidae) in Mediterranean populations of California red scale Aonidiella aurantii (Hemiptera: Diaspididae). Biological Control, 55(2), 132-140. doi:10.1016/j.biocontrol.2010.07.010 | es_ES |
dc.description.references | Pina , T. 2007 Control biologico del piojo rojo de California, Aonidiella aurantii (Maskell) (Hemiptera?: Diaspididae) y estrategias reproductivas de su principal enemigo natural Aphytis chrysomphali (Mercet) (Hymenoptera?: Aphelinidae) University of Valencia Valencia, Spain | es_ES |
dc.description.references | Price, P. W. (1972). Parasitiods Utilizing the Same Host: Adaptive Nature of Differences in Size and Form. Ecology, 53(1), 190-195. doi:10.2307/1935729 | es_ES |
dc.description.references | R Development Team 2013 R version 3.0.2. R Project for Statistical Computing Vienna, Austria www.r-project.org | es_ES |
dc.description.references | Schneider, F. D., Scheu, S., & Brose, U. (2012). Body mass constraints on feeding rates determine the consequences of predator loss. Ecology Letters, 15(5), 436-443. doi:10.1111/j.1461-0248.2012.01750.x | es_ES |
dc.description.references | Schoener, T. W. (1974). Resource Partitioning in Ecological Communities. Science, 185(4145), 27-39. doi:10.1126/science.185.4145.27 | es_ES |
dc.description.references | Schoener, T. W. (2011). The Newest Synthesis: Understanding the Interplay of Evolutionary and Ecological Dynamics. Science, 331(6016), 426-429. doi:10.1126/science.1193954 | es_ES |
dc.description.references | Snyder, R. E., Borer, E. T., & Chesson, P. (2005). Examining the Relative Importance of Spatial and Nonspatial Coexistence Mechanisms. The American Naturalist, 166(4), E75-E94. doi:10.1086/444441 | es_ES |
dc.description.references | Sorribas, J., Rodríguez, R., & Garcia-Mari, F. (2010). Parasitoid competitive displacement and coexistence in citrus agroecosystems: linking species distribution with climate. Ecological Applications, 20(4), 1101-1113. doi:10.1890/09-1662.1 | es_ES |
dc.description.references | Stamp, N. (2001). Enemy-free space via host plant chemistry and dispersion: assessing the influence of tri-trophic interactions. Oecologia, 128(2), 153-163. doi:10.1007/s004420100679 | es_ES |
dc.description.references | Stuart, Y. E., & Losos, J. B. (2013). Ecological character displacement: glass half full or half empty? Trends in Ecology & Evolution, 28(7), 402-408. doi:10.1016/j.tree.2013.02.014 | es_ES |
dc.description.references | Tscharntke, T. (1992). Coexistence, Tritrophic Interactions and Density Dependence in a Species-Rich Parasitoid Community. The Journal of Animal Ecology, 61(1), 59. doi:10.2307/5509 | es_ES |