- -

Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pekas, Apostolos es_ES
dc.contributor.author Tena Barreda, Alejandro es_ES
dc.contributor.author Harvey, J.A. es_ES
dc.contributor.author Garcia Marí, Ferran es_ES
dc.contributor.author Frago, Enric es_ES
dc.date.accessioned 2020-10-07T03:33:57Z
dc.date.available 2020-10-07T03:33:57Z
dc.date.issued 2016-05 es_ES
dc.identifier.issn 0012-9658 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151285
dc.description.abstract [EN] Many insect parasitoids are highly specialized and thus develop on only one or a few related host species, yet some hosts are attacked by many different parasitoid species in nature. For this reason, they have been often used to examine the consequences of competitive interactions. Hosts represent limited resources for larval parasitoid development and thus one competitor usually excludes all others. Although parasitoid competition has been debated and studied over the past several decades, understanding the factors that allow for coexistence among species sharing the same host in the field remains elusive. Parasitoids may be able to coexist on the same host species if they partition host resources according to size, age, or stage, or if their dynamics vary at spatial and temporal scales. One area that has thus far received little experimental attention is if competition can alter host usage strategies in parasitoids that in the absence of competitors attack hosts of the same size in the field. Here, we test this hypothesis with two parasitoid species in the genus Aphytis, both of which are specialized on the citrus pest California red scale Aonidiella aurantii. These parasitoids prefer large scales as hosts and yet coexist in sympatry in eastern parts of Spain. Parasitoids and hosts were sampled in 12 replicated orange groves. When host exploitation by the stronger competitor, A. melinus, was high the poorer competitor, A. chrysomphali, changed its foraging strategy to prefer alternative plant substrates where it parasitized hosts of smaller size. Consequently, the inferior parasitoid species shifted both its habitat and host size as a result of competition. Our results suggest that density-dependent size-mediated asymmetric competition is the likely mechanism allowing for the coexistence of these two species, and that the use of suboptimal (small) hosts can be advantageous under conditions imposed by competition where survival in higher quality larger hosts may be greatly reduced. es_ES
dc.description.sponsorship We would like to thank Amparo Aguilar for her valuable help in the field and in the laboratory, and Camille Ponzio for her comments on an earlier version of the manuscript. We are also grateful to three anonymous reviewers and Jay Rosenheim for their helpful comments. This work was supported by the project AGL2005-07155-C03-03 assigned to F. Garcia-Mari from the Ministerio de Educacion y Ciencia of Spain. E. Frago was funded by Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (FP7-PEOPLE-2012-IEF #329648). es_ES
dc.language Inglés es_ES
dc.publisher Ecological Society of America es_ES
dc.relation.ispartof Ecology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aphytis es_ES
dc.subject California red scale es_ES
dc.subject Competitive exclusion es_ES
dc.subject Host quality es_ES
dc.subject Host-parasitoid interactions es_ES
dc.subject Interspecific competition es_ES
dc.subject Intraguild interactions es_ES
dc.subject Size-mediated interactions es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1890/15-0118.1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/329648/EU/The role of insect symbionts in host plant use through their effect on plant-induced defenses/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2005-07155-C03-03/ES/CONTROL BIOLOGICO Y UMBRALES DE TRATAMIENTO DEL PIOJO ROJO DE CALIFORNIA AONIDIELLA AURANTII (HOMOPTERA: DIASPIDIDAE) EN CITRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Pekas, A.; Tena Barreda, A.; Harvey, J.; Garcia Marí, F.; Frago, E. (2016). Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology. 97(5):1345-1356. https://doi.org/10.1890/15-0118.1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1890/15-0118.1 es_ES
dc.description.upvformatpinicio 1345 es_ES
dc.description.upvformatpfin 1356 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 97 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 27349108 es_ES
dc.relation.pasarela S\324340 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters, 6(12), 1109-1122. doi:10.1046/j.1461-0248.2003.00530.x es_ES
dc.description.references Bates , D. M. Maechler B. Bolker S. Walker 2014 lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7 http://CRAN.R-project.org/package=lme4 es_ES
dc.description.references Bogran, C. E., Heinz, K. M., & Ciomperlik, M. A. (2002). Interspecific Competition among Insect Parasitoids: Field Experiments with Whiteflies as Hosts in Cotton. Ecology, 83(3), 653. doi:10.2307/3071871 es_ES
dc.description.references Bonsall, M. B., & Hassell, M. P. (1999). Parasitoid-mediated effects: apparent competition and the persistence of host–parasitoid assemblages. Researches on Population Ecology, 41(1), 59-68. doi:10.1007/pl00011983 es_ES
dc.description.references Borer, E. T. (2002). Intraguild predation in larval parasitoids: implications for coexistence. Journal of Animal Ecology, 71(6), 957-965. doi:10.1046/j.1365-2656.2002.00660.x es_ES
dc.description.references Borer, E. T., Briggs, C. J., Murdoch, W. W., & Swarbrick, S. L. (2003). Testing intraguild predation theory in a field system: does numerical dominance shift along a gradient of productivity? Ecology Letters, 6(10), 929-935. doi:10.1046/j.1461-0248.2003.00515.x es_ES
dc.description.references Borer, E. T., Murdoch, W. W., & Swarbrick, S. L. (2004). PARASITOID COEXISTENCE: LINKING SPATIAL FIELD PATTERNS WITH MECHANISM. Ecology, 85(3), 667-678. doi:10.1890/02-0566 es_ES
dc.description.references Briggs, C. J. (1993). Competition Among Parasitoid Species on a Stage-Structured Host and Its Effect on Host Suppression. The American Naturalist, 141(3), 372-397. doi:10.1086/285479 es_ES
dc.description.references Brown, W. L., & Wilson, E. O. (1956). Character Displacement. Systematic Zoology, 5(2), 49. doi:10.2307/2411924 es_ES
dc.description.references Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T., & van den Assem, J. (1981). Sex ratio evolution in a variable environment. Nature, 289(5793), 27-33. doi:10.1038/289027a0 es_ES
dc.description.references Chesson, P. (2000). Mechanisms of Maintenance of Species Diversity. Annual Review of Ecology and Systematics, 31(1), 343-366. doi:10.1146/annurev.ecolsys.31.1.343 es_ES
dc.description.references Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application. doi:10.1017/cbo9780511802843 es_ES
dc.description.references De Moraes, C. M., Cortesero, A. M., Stapel, J. O., & Lewis, W. J. (1999). Intrinsic and extrinsic competitive interactions between two larval parasitoids of Heliothis virescens. Ecological Entomology, 24(4), 402-410. doi:10.1046/j.1365-2311.1999.00212.x es_ES
dc.description.references DeBach, P. (1966). The Competitive Displacement and Coexistence Principles. Annual Review of Entomology, 11(1), 183-212. doi:10.1146/annurev.en.11.010166.001151 es_ES
dc.description.references DeBach, P., & Sisojevic, P. (1960). Some Effects of Temperature and Competition on the Distribution and Relative Abundance of Aphytis Lingnanensis and A. Chrysomphali (Hymenoptera: Aphelinidae). Ecology, 41(1), 153-160. doi:10.2307/1931948 es_ES
dc.description.references DeBach, P., & Sundby, R. A. (1963). Competitive displacement between ecological homologues. Hilgardia, 34(5), 105-166. doi:10.3733/hilg.v34n05p105 es_ES
dc.description.references Dunham, A. E. (1980). An Experimental Study of Interspecific Competition Between the Iguanid Lizards Sceloporus Merriami and Urosaurus Ornatus. Ecological Monographs, 50(3), 309-330. doi:10.2307/2937254 es_ES
dc.description.references Frago, E., Pujade-Villar, J., Guara, M., & Selfa, J. (2012). Hyperparasitism and seasonal patterns of parasitism as potential causes of low top-down control in Euproctis chrysorrhoea L. (Lymantriidae). Biological Control, 60(2), 123-131. doi:10.1016/j.biocontrol.2011.11.013 es_ES
dc.description.references Godfray, H. C. J. (1994). Parasitoids. doi:10.1515/9780691207025 es_ES
dc.description.references Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T., & Fox, J. A. (2005). Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters, 8(10), 1114-1127. doi:10.1111/j.1461-0248.2005.00812.x es_ES
dc.description.references Hardin, G. (1960). The Competitive Exclusion Principle. Science, 131(3409), 1292-1297. doi:10.1126/science.131.3409.1292 es_ES
dc.description.references Harvey, J. A. (2005). Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomologia Experimentalis et Applicata, 117(1), 1-13. doi:10.1111/j.1570-7458.2005.00348.x es_ES
dc.description.references Harvey, J. A., Bezemer, T. M., Elzinga, J. A., & Strand, M. R. (2004). Development of the solitary endoparasitoidMicroplitis demolitor: host quality does not increase with host age and size. Ecological Entomology, 29(1), 35-43. doi:10.1111/j.0307-6946.2004.00568.x es_ES
dc.description.references Harvey, J. A., Poelman, E. H., & Tanaka, T. (2013). Intrinsic Inter- and Intraspecific Competition in Parasitoid Wasps. Annual Review of Entomology, 58(1), 333-351. doi:10.1146/annurev-ento-120811-153622 es_ES
dc.description.references Luck, R. F., & Podoler, H. (1985). Competitive Exclusion of Aphytis lingnanensis by A. melinus: Potential Role of Host Size. Ecology, 66(3), 904-913. doi:10.2307/1940553 es_ES
dc.description.references MAGDARAOG, P. M., HARVEY, J. A., TANAKA, T., & GOLS, R. (2012). Intrinsic competition among solitary and gregarious endoparasitoid wasps and the phenomenon of ‘resource sharing’. Ecological Entomology, 37(1), 65-74. doi:10.1111/j.1365-2311.2011.01338.x es_ES
dc.description.references May, R. M., & Hassell, M. P. (1981). The Dynamics of Multiparasitoid-Host Interactions. The American Naturalist, 117(3), 234-261. doi:10.1086/283704 es_ES
dc.description.references Mills, N. J., & Getz, W. M. (1996). Modelling the biological control of insect pests: a review of host-parasitoid models. Ecological Modelling, 92(2-3), 121-143. doi:10.1016/0304-3800(95)00177-8 es_ES
dc.description.references Moreno, D. S., & Luck, R. F. (1992). Augmentative Releases of Aphytis melinus (Hymenoptera: Aphelinidae) To Suppress California Red Scale (Homoptera: Diaspididae) in Southern California Lemon Orchards. Journal of Economic Entomology, 85(4), 1112-1119. doi:10.1093/jee/85.4.1112 es_ES
dc.description.references Morin, P. J. (2011). Community Ecology. doi:10.1002/9781444341966 es_ES
dc.description.references Murdoch, W. W., Luck, R. F., Walde, S. J., Reeve, J. D., & Yu, D. S. (1989). A Refuge for Red Scale Under Control by Aphytis: Structural Aspects. Ecology, 70(6), 1707-1714. doi:10.2307/1938105 es_ES
dc.description.references Murdoch, W. W., Briggs, C. J., & Nisbet, R. M. (1996). Competitive Displacement and Biological Control in Parasitoids: A Model. The American Naturalist, 148(5), 807-826. doi:10.1086/285957 es_ES
dc.description.references Pekas, A., Aguilar, A., Tena, A., & Garcia-Marí, F. (2010). Influence of host size on parasitism by Aphytis chrysomphali and A. melinus (Hymenoptera: Aphelinidae) in Mediterranean populations of California red scale Aonidiella aurantii (Hemiptera: Diaspididae). Biological Control, 55(2), 132-140. doi:10.1016/j.biocontrol.2010.07.010 es_ES
dc.description.references Pina , T. 2007 Control biologico del piojo rojo de California, Aonidiella aurantii (Maskell) (Hemiptera?: Diaspididae) y estrategias reproductivas de su principal enemigo natural Aphytis chrysomphali (Mercet) (Hymenoptera?: Aphelinidae) University of Valencia Valencia, Spain es_ES
dc.description.references Price, P. W. (1972). Parasitiods Utilizing the Same Host: Adaptive Nature of Differences in Size and Form. Ecology, 53(1), 190-195. doi:10.2307/1935729 es_ES
dc.description.references R Development Team 2013 R version 3.0.2. R Project for Statistical Computing Vienna, Austria www.r-project.org es_ES
dc.description.references Schneider, F. D., Scheu, S., & Brose, U. (2012). Body mass constraints on feeding rates determine the consequences of predator loss. Ecology Letters, 15(5), 436-443. doi:10.1111/j.1461-0248.2012.01750.x es_ES
dc.description.references Schoener, T. W. (1974). Resource Partitioning in Ecological Communities. Science, 185(4145), 27-39. doi:10.1126/science.185.4145.27 es_ES
dc.description.references Schoener, T. W. (2011). The Newest Synthesis: Understanding the Interplay of Evolutionary and Ecological Dynamics. Science, 331(6016), 426-429. doi:10.1126/science.1193954 es_ES
dc.description.references Snyder, R. E., Borer, E. T., & Chesson, P. (2005). Examining the Relative Importance of Spatial and Nonspatial Coexistence Mechanisms. The American Naturalist, 166(4), E75-E94. doi:10.1086/444441 es_ES
dc.description.references Sorribas, J., Rodríguez, R., & Garcia-Mari, F. (2010). Parasitoid competitive displacement and coexistence in citrus agroecosystems: linking species distribution with climate. Ecological Applications, 20(4), 1101-1113. doi:10.1890/09-1662.1 es_ES
dc.description.references Stamp, N. (2001). Enemy-free space via host plant chemistry and dispersion: assessing the influence of tri-trophic interactions. Oecologia, 128(2), 153-163. doi:10.1007/s004420100679 es_ES
dc.description.references Stuart, Y. E., & Losos, J. B. (2013). Ecological character displacement: glass half full or half empty? Trends in Ecology & Evolution, 28(7), 402-408. doi:10.1016/j.tree.2013.02.014 es_ES
dc.description.references Tscharntke, T. (1992). Coexistence, Tritrophic Interactions and Density Dependence in a Species-Rich Parasitoid Community. The Journal of Animal Ecology, 61(1), 59. doi:10.2307/5509 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem