- -

Multiobjective Identification of a Feedback Synthetic Gene Circuit

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiobjective Identification of a Feedback Synthetic Gene Circuit

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boada-Acosta, Yadira Fernanda es_ES
dc.contributor.author Vignoni, Alejandro es_ES
dc.contributor.author Picó, Jesús es_ES
dc.date.accessioned 2020-10-07T03:34:16Z
dc.date.available 2020-10-07T03:34:16Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 1063-6536 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151291
dc.description © 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract [EN] Kinetic (i.e., dynamic) semimechanistic models based on the first principles are particularly important in systems and synthetic biology since they can explain and predict the functional behavior that emerges from the time-varying concentrations in cellular components. However, gene circuit models are nonlinear higher order ones and have a large number of parameters. In addition, experimental measurements are often scarce, and enough signal excitability for identification cannot always be achieved. These characteristics render the identification problem ill-posed, so most gene circuit models present incomplete parameter identifiability. Thus, parameter identification of typical biological models still appears as an open problem, where ensemble modeling approaches and multiobjective optimization arise as natural options. We address the problem of identifying the stochastic model of a closed-loop synthetic genetic circuit designed to minimize the gene expression noise. The model results from the feedback interaction between two subsystems. Besides incomplete parameter identifiability, the closed-loop dynamics cannot be directly identified due to the lack of enough input signal excitability. We apply a two-stage approach. First, the open-loop averaged time-course experimental data are used to identify a reduced-order stochastic model of the system direct chain. Then, closed-loop steady-state stochastic distributions are used to identify the remaining parameters in the feedback configuration. In both cases, multiobjective optimization is used to address the parameter identifiability, providing sets of parameters valid for different state-space regions. The methodology gives good identification results, provides clear guidelines on the effect of the parameters under different scenarios, and it is particularly useful for easily combining time-course population averaged and steady-state single-cell distribution experimental data. es_ES
dc.description.sponsorship This work was supported by the European Union and Spanish Government, MINECO/AEI/FEDER under Grant DPI2017-82896-C2-1-R. The work of Y. Boada was supported by the Universitat Politecnica de Valencia under Grant FPI/2013-3242. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Control Systems Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Closed-loop identification es_ES
dc.subject Feedback synthetic gene circuit es_ES
dc.subject Model reduction es_ES
dc.subject Multiobjective optimization es_ES
dc.subject Parameter identification es_ES
dc.subject Synthetic biology es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Multiobjective Identification of a Feedback Synthetic Gene Circuit es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TCST.2018.2885694 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI%2F2013-3242/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Boada-Acosta, YF.; Vignoni, A.; Picó, J. (2020). Multiobjective Identification of a Feedback Synthetic Gene Circuit. IEEE Transactions on Control Systems Technology. 28(1):208-223. https://doi.org/10.1109/TCST.2018.2885694 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TCST.2018.2885694 es_ES
dc.description.upvformatpinicio 208 es_ES
dc.description.upvformatpfin 223 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\398962 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem