Mostrar el registro sencillo del ítem
dc.contributor.author | Moreno-Navarro, Pablo | es_ES |
dc.contributor.author | Pérez-Aparicio, José L. | es_ES |
dc.contributor.author | Gómez-Hernández, J. Jaime | es_ES |
dc.date.accessioned | 2020-10-07T03:34:29Z | |
dc.date.available | 2020-10-07T03:34:29Z | |
dc.date.issued | 2017-06-25 | es_ES |
dc.identifier.issn | 1359-4311 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151295 | |
dc.description.abstract | [EN] The objective of this work is to determine the optimal shape, gains and duration of an electric pulse applied to a Peltier cell, together with the length of the thermoelectric to maximize cooling while min- imizing electric consumption. For this purpose, a fully coupled, multiphysics, dynamic finite-element model, which solves for the thermal, electric and mechanical fields is used. Because of the demanding computing requirements of the optimization process, a special mesh is designed and a convergence anal- ysis is carried out before using the multiphysics model. The highly non-linear optimization is done by simulated annealing, a heuristic algorithm in the Markov chain Monte-Carlo family. A preliminary para- metric investigation is presented, analyzing the impact of some of the parameters. The results of this pre- liminary analysis help to understand the effect of the different shapes in the evolution of the cold face temperature. Some of these results are expected and have already been discussed elsewhere, but others can only be explained after further analysis and a full system modeling. Pulse optimization is multiobjec- tive and multiparametric, i.e., it can consider several targets such as maximizing the cooling temperature, the cooling duration or others. The trade-offs between the different targets are studied. In all cases, stres- ses inside the thermoelement are examined at all points, and the pulses must meet the restriction that an equivalent stress is not above the allowable value. | es_ES |
dc.description.sponsorship | This research was partially supported by the grants, Haut-de-France Region (CR Picardie, 120-2015-RDISTRUCT-000010), EU funding (FEDER, RDISTRUCT-000010) for Chaire-de-Mecanique, and Spanish Ministry of Economy and Competitiveness grant CGL2014-59841-P. These supports are gratefully acknowledged | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Thermal Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Pulsed thermoelectrics | es_ES |
dc.subject | Non-linear dynamic finite elements | es_ES |
dc.subject | Multiphysics | es_ES |
dc.subject | Pulse shape optimization | es_ES |
dc.subject | Simulated annealing | es_ES |
dc.subject | Multiobjective-multiparameter | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Optimization of pulsed thermoelectric materials using simulated annealing and non-linear finite elements | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.applthermaleng.2017.04.036 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Conseil Régional de Picardie//120-2015-RDISTRUCT-000010/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2014-59841-P/ES/¿QUIEN HA SIDO?/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Moreno-Navarro, P.; Pérez-Aparicio, JL.; Gómez-Hernández, JJ. (2017). Optimization of pulsed thermoelectric materials using simulated annealing and non-linear finite elements. Applied Thermal Engineering. 120:603-613. https://doi.org/10.1016/j.applthermaleng.2017.04.036 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.applthermaleng.2017.04.036 | es_ES |
dc.description.upvformatpinicio | 603 | es_ES |
dc.description.upvformatpfin | 613 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 120 | es_ES |
dc.relation.pasarela | S\335917 | es_ES |
dc.contributor.funder | Conseil Régional de Picardie | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |