- -

Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sancho-Tello Valls, Maria es_ES
dc.contributor.author Martorell-Tejedor, Sara es_ES
dc.contributor.author Mata, Manuel es_ES
dc.contributor.author Millán, L. es_ES
dc.contributor.author Gamiz Gonzalez, Mª Amparo es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Carda-Batalla, Carmen es_ES
dc.date.accessioned 2020-10-07T03:34:50Z
dc.date.available 2020-10-07T03:34:50Z
dc.date.issued 2017-03-23 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151303
dc.description.abstract [EN] The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chondrocytes were isolated and cultured in stabilized porous chitosan scaffolds with and without combination to activated platelet-rich plasma. Scanning electron microscopy was used for the morphological characterization of the resulting scaffolds. Cell counts were performed in hematoxylin and eosin-stained sections, and type I and II collagen expression was evaluated using immunohistochemistry. Significant increase in cell number in activated platelet-rich plasma/stabilized porous chitosan was found compared with stabilized porous chitosan scaffolds. Chondrocytes grown on stabilized porous chitosan expressed high levels of type I collagen but type II was not detectable, whereas cells grown on activated platelet rich plasma/stabilized porous chitosan scaffolds expressed high levels of type II collagen and type I was almost undetectable. In summary, activated platelet-rich plasma increases nesting and induces the differentiation of chondrocytes cultured on stabilized porous chitosan scaffolds. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants MAT2016-76039-C4-2-R (M.S.-T. and C.C.) and MAT 2013-46467-C4-1-R (M.A.G.-G. and J.L.G.R.) from the Ministry of Economy and Competitiveness of the Spanish Government and by the program VLC-Bioclinic from the University of Valencia and INCLIVA (Spain). CIBER-BBN and CIBERER are funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development Fund. M.A.G.-G. acknowledges a grant from the BES-2011-044740. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Journal of Tissue Engineering es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Cartilage tissue engineering es_ES
dc.subject Stabilized porous chitosan es_ES
dc.subject Activated platelet-rich plasma es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/2041731417697545 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-2-R/ES/DIFERENCIACION CONDROGENICA DE CELULAS CULTIVADAS EN INTERFASES ELECTRICAMENTE ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-044740/ES/BES-2011-044740/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Sancho-Tello Valls, M.; Martorell-Tejedor, S.; Mata, M.; Millán, L.; Gamiz Gonzalez, MA.; Gómez Ribelles, JL.; Carda-Batalla, C. (2017). Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds. Journal of Tissue Engineering. 8:1-6. https://doi.org/10.1177/2041731417697545 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/2041731417697545 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 2041-7314 es_ES
dc.identifier.pmid 28540030 es_ES
dc.identifier.pmcid PMC5433660 es_ES
dc.relation.pasarela S\357734 es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Instituto de Investigación Sanitaria INCLIVA es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Muzzarelli, R. A. A., Greco, F., Busilacchi, A., Sollazzo, V., & Gigante, A. (2012). Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review. Carbohydrate Polymers, 89(3), 723-739. doi:10.1016/j.carbpol.2012.04.057 es_ES
dc.description.references XIE, A., NIE, L., SHEN, G., CUI, Z., XU, P., GE, H., & TAN, Q. (2014). The application of autologous platelet-rich plasma gel in cartilage regeneration. Molecular Medicine Reports, 10(3), 1642-1648. doi:10.3892/mmr.2014.2358 es_ES
dc.description.references Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D. A., & Quiñones-Olvera, L. F. (2015). Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. BioMed Research International, 2015, 1-15. doi:10.1155/2015/821279 es_ES
dc.description.references Kim, J., Lin, B., Kim, S., Choi, B., Evseenko, D., & Lee, M. (2015). TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. Journal of Biological Engineering, 9(1). doi:10.1186/1754-1611-9-1 es_ES
dc.description.references Shimojo, A. A. M., Perez, A. G. M., Galdames, S. E. M., Brissac, I. C. de S., & Santana, M. H. A. (2015). Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine. The Scientific World Journal, 2015, 1-12. doi:10.1155/2015/396131 es_ES
dc.description.references SHEN, J., GAO, Q., ZHANG, Y., & HE, Y. (2014). Autologous platelet-rich plasma promotes proliferation and chondrogenic differentiation of adipose-derived stem cells. Molecular Medicine Reports, 11(2), 1298-1303. doi:10.3892/mmr.2014.2875 es_ES
dc.description.references Krüger, J. P., Ketzmar, A.-K., Endres, M., Pruss, A., Siclari, A., & Kaps, C. (2013). Human platelet-rich plasma induces chondrogenic differentiation of subchondral progenitor cells in polyglycolic acid-hyaluronan scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(4), 681-692. doi:10.1002/jbm.b.33047 es_ES
dc.description.references Dhurat, R., & Sukesh, M. (2014). Principles and methods of preparation of platelet-rich plasma: A review and author′s perspective. Journal of Cutaneous and Aesthetic Surgery, 7(4), 189. doi:10.4103/0974-2077.150734 es_ES
dc.description.references Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution ofin VivoArticular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404 es_ES
dc.description.references Shimojo, A. A. M., Perez, A. G. M., Galdames, S. E. M., Brissac, I. C. S., & Santana, M. H. A. (2016). Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold. Materials Science and Engineering: C, 60, 538-546. doi:10.1016/j.msec.2015.11.080 es_ES
dc.description.references Oktay, E., Demiralp, B., Demiralp, B., Senel, S., Cevdet Akman, A., Eratalay, K., & Akıncıbay, H. (2010). Effects of Platelet-Rich Plasma and Chitosan Combination on Bone Regeneration in Experimental Rabbit Cranial Defects. Journal of Oral Implantology, 36(3), 175-184. doi:10.1563/aaid-joi-d-09-00023 es_ES
dc.description.references Kutlu, B., Tiğlı Aydın, R. S., Akman, A. C., Gümüşderelioglu, M., & Nohutcu, R. M. (2012). Platelet-rich plasma-loaded chitosan scaffolds: Preparation and growth factor release kinetics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 28-35. doi:10.1002/jbm.b.32806 es_ES
dc.description.references Bi, L., Cheng, W., Fan, H., & Pei, G. (2010). Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. Biomaterials, 31(12), 3201-3211. doi:10.1016/j.biomaterials.2010.01.038 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem