Mostrar el registro sencillo del ítem
dc.contributor.author | Sancho-Tello Valls, Maria | es_ES |
dc.contributor.author | Martorell-Tejedor, Sara | es_ES |
dc.contributor.author | Mata, Manuel | es_ES |
dc.contributor.author | Millán, L. | es_ES |
dc.contributor.author | Gamiz Gonzalez, Mª Amparo | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Carda-Batalla, Carmen | es_ES |
dc.date.accessioned | 2020-10-07T03:34:50Z | |
dc.date.available | 2020-10-07T03:34:50Z | |
dc.date.issued | 2017-03-23 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151303 | |
dc.description.abstract | [EN] The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chondrocytes were isolated and cultured in stabilized porous chitosan scaffolds with and without combination to activated platelet-rich plasma. Scanning electron microscopy was used for the morphological characterization of the resulting scaffolds. Cell counts were performed in hematoxylin and eosin-stained sections, and type I and II collagen expression was evaluated using immunohistochemistry. Significant increase in cell number in activated platelet-rich plasma/stabilized porous chitosan was found compared with stabilized porous chitosan scaffolds. Chondrocytes grown on stabilized porous chitosan expressed high levels of type I collagen but type II was not detectable, whereas cells grown on activated platelet rich plasma/stabilized porous chitosan scaffolds expressed high levels of type II collagen and type I was almost undetectable. In summary, activated platelet-rich plasma increases nesting and induces the differentiation of chondrocytes cultured on stabilized porous chitosan scaffolds. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants MAT2016-76039-C4-2-R (M.S.-T. and C.C.) and MAT 2013-46467-C4-1-R (M.A.G.-G. and J.L.G.R.) from the Ministry of Economy and Competitiveness of the Spanish Government and by the program VLC-Bioclinic from the University of Valencia and INCLIVA (Spain). CIBER-BBN and CIBERER are funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development Fund. M.A.G.-G. acknowledges a grant from the BES-2011-044740. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Journal of Tissue Engineering | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Cartilage tissue engineering | es_ES |
dc.subject | Stabilized porous chitosan | es_ES |
dc.subject | Activated platelet-rich plasma | es_ES |
dc.subject.classification | TERMODINAMICA APLICADA (UPV) | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/2041731417697545 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-2-R/ES/DIFERENCIACION CONDROGENICA DE CELULAS CULTIVADAS EN INTERFASES ELECTRICAMENTE ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-044740/ES/BES-2011-044740/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Sancho-Tello Valls, M.; Martorell-Tejedor, S.; Mata, M.; Millán, L.; Gamiz Gonzalez, MA.; Gómez Ribelles, JL.; Carda-Batalla, C. (2017). Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds. Journal of Tissue Engineering. 8:1-6. https://doi.org/10.1177/2041731417697545 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/2041731417697545 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.eissn | 2041-7314 | es_ES |
dc.identifier.pmid | 28540030 | es_ES |
dc.identifier.pmcid | PMC5433660 | es_ES |
dc.relation.pasarela | S\357734 | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Instituto de Investigación Sanitaria INCLIVA | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Muzzarelli, R. A. A., Greco, F., Busilacchi, A., Sollazzo, V., & Gigante, A. (2012). Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review. Carbohydrate Polymers, 89(3), 723-739. doi:10.1016/j.carbpol.2012.04.057 | es_ES |
dc.description.references | XIE, A., NIE, L., SHEN, G., CUI, Z., XU, P., GE, H., & TAN, Q. (2014). The application of autologous platelet-rich plasma gel in cartilage regeneration. Molecular Medicine Reports, 10(3), 1642-1648. doi:10.3892/mmr.2014.2358 | es_ES |
dc.description.references | Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D. A., & Quiñones-Olvera, L. F. (2015). Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. BioMed Research International, 2015, 1-15. doi:10.1155/2015/821279 | es_ES |
dc.description.references | Kim, J., Lin, B., Kim, S., Choi, B., Evseenko, D., & Lee, M. (2015). TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. Journal of Biological Engineering, 9(1). doi:10.1186/1754-1611-9-1 | es_ES |
dc.description.references | Shimojo, A. A. M., Perez, A. G. M., Galdames, S. E. M., Brissac, I. C. de S., & Santana, M. H. A. (2015). Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine. The Scientific World Journal, 2015, 1-12. doi:10.1155/2015/396131 | es_ES |
dc.description.references | SHEN, J., GAO, Q., ZHANG, Y., & HE, Y. (2014). Autologous platelet-rich plasma promotes proliferation and chondrogenic differentiation of adipose-derived stem cells. Molecular Medicine Reports, 11(2), 1298-1303. doi:10.3892/mmr.2014.2875 | es_ES |
dc.description.references | Krüger, J. P., Ketzmar, A.-K., Endres, M., Pruss, A., Siclari, A., & Kaps, C. (2013). Human platelet-rich plasma induces chondrogenic differentiation of subchondral progenitor cells in polyglycolic acid-hyaluronan scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(4), 681-692. doi:10.1002/jbm.b.33047 | es_ES |
dc.description.references | Dhurat, R., & Sukesh, M. (2014). Principles and methods of preparation of platelet-rich plasma: A review and author′s perspective. Journal of Cutaneous and Aesthetic Surgery, 7(4), 189. doi:10.4103/0974-2077.150734 | es_ES |
dc.description.references | Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution ofin VivoArticular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404 | es_ES |
dc.description.references | Shimojo, A. A. M., Perez, A. G. M., Galdames, S. E. M., Brissac, I. C. S., & Santana, M. H. A. (2016). Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold. Materials Science and Engineering: C, 60, 538-546. doi:10.1016/j.msec.2015.11.080 | es_ES |
dc.description.references | Oktay, E., Demiralp, B., Demiralp, B., Senel, S., Cevdet Akman, A., Eratalay, K., & Akıncıbay, H. (2010). Effects of Platelet-Rich Plasma and Chitosan Combination on Bone Regeneration in Experimental Rabbit Cranial Defects. Journal of Oral Implantology, 36(3), 175-184. doi:10.1563/aaid-joi-d-09-00023 | es_ES |
dc.description.references | Kutlu, B., Tiğlı Aydın, R. S., Akman, A. C., Gümüşderelioglu, M., & Nohutcu, R. M. (2012). Platelet-rich plasma-loaded chitosan scaffolds: Preparation and growth factor release kinetics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(1), 28-35. doi:10.1002/jbm.b.32806 | es_ES |
dc.description.references | Bi, L., Cheng, W., Fan, H., & Pei, G. (2010). Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. Biomaterials, 31(12), 3201-3211. doi:10.1016/j.biomaterials.2010.01.038 | es_ES |