Mostrar el registro sencillo del ítem
dc.contributor.author | Wegrzyn, Marcin | es_ES |
dc.contributor.author | Galindo-Galiana, Begoña | es_ES |
dc.contributor.author | Benedito, Adolfo | es_ES |
dc.contributor.author | Giménez Torres, Enrique | es_ES |
dc.date.accessioned | 2020-10-07T03:34:54Z | |
dc.date.available | 2020-10-07T03:34:54Z | |
dc.date.issued | 2015-12-10 | es_ES |
dc.identifier.issn | 0021-8995 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151305 | |
dc.description | "This is the peer reviewed version of the following article: Wegrzyn, M., Galindo, B., Benedito, A., & Gimenez, E. (2015). Morphology, thermal, and electrical properties of polypropylene hybrid composites co‐filled with multi‐walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science, 132(46)., which has been published in final form at https://doi.org/10.1002/app.42793. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] In this study, nanocomposites of polypropylene (PP) with various loadings of multi-wall carbon nanotubes (MWCNT) and graphene nanoplatelets (GnP) were formed by masterbatch dilution/mixing approach from individual masterbatches PP-MWCNT and PP-GnP. Melt mixing on a twin-screw extruder at two different processing temperatures was followed by characterization of morphology by transmitted-light microscopy including the statistical analysis of agglomeration behavior. The influence of processing temperature and weight fractions of both nanofillers on the dispersion quality is reported. Thermal properties of the nanocomposites investigated by DSC and TGA show sensitivity to the nanofillers weight fraction ratio and to processing conditions. Electrical conductivity is observed to increase up to an order of magnitude with the concentration of each nanofiller increasing from 0.5 wt % to 1.0 wt %. This is related with a decrease of electrical conductivity observed for unequal concentration of both nanofillers. This particular behavior shows the increase of electrical properties for higher MWCNT loadings and the increase of thermo-mechanical properties for higher GnP loadings. (c) 2015 Wiley Periodicals, Inc. | es_ES |
dc.description.sponsorship | This study is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of Applied Polymer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Extrusion | es_ES |
dc.subject | Graphene and fullerenes | es_ES |
dc.subject | Nanotubes | es_ES |
dc.subject | Polyolefins | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/app.42793 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/238363/EU/Marie Curie Initial Training Network for the tailored supply-chain development of the mechanical and electrical properties of CNT-filled composites/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Wegrzyn, M.; Galindo-Galiana, B.; Benedito, A.; Giménez Torres, E. (2015). Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science. 132(46). https://doi.org/10.1002/app.42793 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/app.42793 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 132 | es_ES |
dc.description.issue | 46 | es_ES |
dc.relation.pasarela | S\306875 | es_ES |
dc.description.references | Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054 | es_ES |
dc.description.references | Singh, I. V., Tanaka, M., & Endo, M. (2007). Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 46(9), 842-847. doi:10.1016/j.ijthermalsci.2006.11.003 | es_ES |
dc.description.references | Kuan, H.-C., Ma, C.-C. M., Chang, W.-P., Yuen, S.-M., Wu, H.-H., & Lee, T.-M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65(11-12), 1703-1710. doi:10.1016/j.compscitech.2005.02.017 | es_ES |
dc.description.references | Arasteh, R., Omidi, M., Rousta, A. H. A., & Kazerooni, H. (2011). A Study on Effect of Waviness on Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites Using Modified Halpin–Tsai Theory. Journal of Macromolecular Science, Part B, 50(12), 2464-2480. doi:10.1080/00222348.2011.579868 | es_ES |
dc.description.references | Cai, D., Jin, J., Yusoh, K., Rafiq, R., & Song, M. (2012). High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Composites Science and Technology, 72(6), 702-707. doi:10.1016/j.compscitech.2012.01.020 | es_ES |
dc.description.references | Yan, D., Zhang, H.-B., Jia, Y., Hu, J., Qi, X.-Y., Zhang, Z., & Yu, Z.-Z. (2012). Improved Electrical Conductivity of Polyamide 12/Graphene Nanocomposites with Maleated Polyethylene-Octene Rubber Prepared by Melt Compounding. ACS Applied Materials & Interfaces, 4(9), 4740-4745. doi:10.1021/am301119b | es_ES |
dc.description.references | Haslam, M. D., & Raeymaekers, B. (2013). A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Composites Part B: Engineering, 55, 16-21. doi:10.1016/j.compositesb.2013.05.038 | es_ES |
dc.description.references | Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005 | es_ES |
dc.description.references | Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8 | es_ES |
dc.description.references | Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969 | es_ES |
dc.description.references | Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018 | es_ES |
dc.description.references | Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645f | es_ES |
dc.description.references | Alig, I., Lellinger, D., Dudkin, S. M., & Pötschke, P. (2007). Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer, 48(4), 1020-1029. doi:10.1016/j.polymer.2006.12.035 | es_ES |
dc.description.references | Chaharmahali, M., Hamzeh, Y., Ebrahimi, G., Ashori, A., & Ghasemi, I. (2013). Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polymer Bulletin, 71(2), 337-349. doi:10.1007/s00289-013-1064-3 | es_ES |
dc.description.references | Hill, D. E., Lin, Y., Rao, A. M., Allard, L. F., & Sun, Y.-P. (2002). Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules, 35(25), 9466-9471. doi:10.1021/ma020855r | es_ES |
dc.description.references | Yu, Y.-H., Lin, Y.-Y., Lin, C.-H., Chan, C.-C., & Huang, Y.-C. (2014). High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem., 5(2), 535-550. doi:10.1039/c3py00825h | es_ES |
dc.description.references | Zhang, S., Yin, S., Rong, C., Huo, P., Jiang, Z., & Wang, G. (2013). Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. European Polymer Journal, 49(10), 3125-3134. doi:10.1016/j.eurpolymj.2013.07.011 | es_ES |
dc.description.references | Huang, G., Wang, S., Song, P., Wu, C., Chen, S., & Wang, X. (2014). Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Composites Part A: Applied Science and Manufacturing, 59, 18-25. doi:10.1016/j.compositesa.2013.12.010 | es_ES |
dc.description.references | Chatterjee, S., Nafezarefi, F., Tai, N. H., Schlagenhauf, L., Nüesch, F. A., & Chu, B. T. T. (2012). Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 50(15), 5380-5386. doi:10.1016/j.carbon.2012.07.021 | es_ES |
dc.description.references | Im, H., & Kim, J. (2012). Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon, 50(15), 5429-5440. doi:10.1016/j.carbon.2012.07.029 | es_ES |
dc.description.references | Jiang, X., & Drzal, L. T. (2011). Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes. Composites Part A: Applied Science and Manufacturing, 42(11), 1840-1849. doi:10.1016/j.compositesa.2011.08.011 | es_ES |
dc.description.references | Hwang, S.-H., Park, H. W., Park, Y.-B., Um, M.-K., Byun, J.-H., & Kwon, S. (2013). Electromechanical strain sensing using polycarbonate-impregnated carbon nanotube–graphene nanoplatelet hybrid composite sheets. Composites Science and Technology, 89, 1-9. doi:10.1016/j.compscitech.2013.09.005 | es_ES |
dc.description.references | Chatterjee, S., Nüesch, F. A., & Chu, B. T. T. (2013). Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chemical Physics Letters, 557, 92-96. doi:10.1016/j.cplett.2012.11.091 | es_ES |
dc.description.references | Lahiri, D., Hec, F., Thiesse, M., Durygin, A., Zhang, C., & Agarwal, A. (2014). Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites. Tribology International, 70, 165-169. doi:10.1016/j.triboint.2013.10.012 | es_ES |
dc.description.references | Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198. doi:10.1016/j.progpolymsci.2008.07.008 | es_ES |
dc.description.references | Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412 | es_ES |
dc.description.references | Pegel , S. Villmow , T. Pötschke , P. In Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications McNally , T. Pötschke , P. Woodhead Publishing Cambridge 2011 | es_ES |
dc.description.references | Zhang, R., Moon, K., Lin, W., & Wong, C. P. (2010). Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles. Journal of Materials Chemistry, 20(10), 2018. doi:10.1039/b921072e | es_ES |
dc.description.references | Grossiord, N., Kivit, P. J. J., Loos, J., Meuldijk, J., Kyrylyuk, A. V., van der Schoot, P., & Koning, C. E. (2008). On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer, 49(12), 2866-2872. doi:10.1016/j.polymer.2008.04.033 | es_ES |