- -

Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wegrzyn, Marcin es_ES
dc.contributor.author Galindo-Galiana, Begoña es_ES
dc.contributor.author Benedito, Adolfo es_ES
dc.contributor.author Giménez Torres, Enrique es_ES
dc.date.accessioned 2020-10-07T03:34:54Z
dc.date.available 2020-10-07T03:34:54Z
dc.date.issued 2015-12-10 es_ES
dc.identifier.issn 0021-8995 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151305
dc.description "This is the peer reviewed version of the following article: Wegrzyn, M., Galindo, B., Benedito, A., & Gimenez, E. (2015). Morphology, thermal, and electrical properties of polypropylene hybrid composites co‐filled with multi‐walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science, 132(46)., which has been published in final form at https://doi.org/10.1002/app.42793. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] In this study, nanocomposites of polypropylene (PP) with various loadings of multi-wall carbon nanotubes (MWCNT) and graphene nanoplatelets (GnP) were formed by masterbatch dilution/mixing approach from individual masterbatches PP-MWCNT and PP-GnP. Melt mixing on a twin-screw extruder at two different processing temperatures was followed by characterization of morphology by transmitted-light microscopy including the statistical analysis of agglomeration behavior. The influence of processing temperature and weight fractions of both nanofillers on the dispersion quality is reported. Thermal properties of the nanocomposites investigated by DSC and TGA show sensitivity to the nanofillers weight fraction ratio and to processing conditions. Electrical conductivity is observed to increase up to an order of magnitude with the concentration of each nanofiller increasing from 0.5 wt % to 1.0 wt %. This is related with a decrease of electrical conductivity observed for unequal concentration of both nanofillers. This particular behavior shows the increase of electrical properties for higher MWCNT loadings and the increase of thermo-mechanical properties for higher GnP loadings. (c) 2015 Wiley Periodicals, Inc. es_ES
dc.description.sponsorship This study is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Applied Polymer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Extrusion es_ES
dc.subject Graphene and fullerenes es_ES
dc.subject Nanotubes es_ES
dc.subject Polyolefins es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/app.42793 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/238363/EU/Marie Curie Initial Training Network for the tailored supply-chain development of the mechanical and electrical properties of CNT-filled composites/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Wegrzyn, M.; Galindo-Galiana, B.; Benedito, A.; Giménez Torres, E. (2015). Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science. 132(46). https://doi.org/10.1002/app.42793 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/app.42793 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 132 es_ES
dc.description.issue 46 es_ES
dc.relation.pasarela S\306875 es_ES
dc.description.references Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054 es_ES
dc.description.references Singh, I. V., Tanaka, M., & Endo, M. (2007). Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 46(9), 842-847. doi:10.1016/j.ijthermalsci.2006.11.003 es_ES
dc.description.references Kuan, H.-C., Ma, C.-C. M., Chang, W.-P., Yuen, S.-M., Wu, H.-H., & Lee, T.-M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65(11-12), 1703-1710. doi:10.1016/j.compscitech.2005.02.017 es_ES
dc.description.references Arasteh, R., Omidi, M., Rousta, A. H. A., & Kazerooni, H. (2011). A Study on Effect of Waviness on Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites Using Modified Halpin–Tsai Theory. Journal of Macromolecular Science, Part B, 50(12), 2464-2480. doi:10.1080/00222348.2011.579868 es_ES
dc.description.references Cai, D., Jin, J., Yusoh, K., Rafiq, R., & Song, M. (2012). High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Composites Science and Technology, 72(6), 702-707. doi:10.1016/j.compscitech.2012.01.020 es_ES
dc.description.references Yan, D., Zhang, H.-B., Jia, Y., Hu, J., Qi, X.-Y., Zhang, Z., & Yu, Z.-Z. (2012). Improved Electrical Conductivity of Polyamide 12/Graphene Nanocomposites with Maleated Polyethylene-Octene Rubber Prepared by Melt Compounding. ACS Applied Materials & Interfaces, 4(9), 4740-4745. doi:10.1021/am301119b es_ES
dc.description.references Haslam, M. D., & Raeymaekers, B. (2013). A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Composites Part B: Engineering, 55, 16-21. doi:10.1016/j.compositesb.2013.05.038 es_ES
dc.description.references Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005 es_ES
dc.description.references Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8 es_ES
dc.description.references Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969 es_ES
dc.description.references Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018 es_ES
dc.description.references Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645f es_ES
dc.description.references Alig, I., Lellinger, D., Dudkin, S. M., & Pötschke, P. (2007). Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer, 48(4), 1020-1029. doi:10.1016/j.polymer.2006.12.035 es_ES
dc.description.references Chaharmahali, M., Hamzeh, Y., Ebrahimi, G., Ashori, A., & Ghasemi, I. (2013). Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polymer Bulletin, 71(2), 337-349. doi:10.1007/s00289-013-1064-3 es_ES
dc.description.references Hill, D. E., Lin, Y., Rao, A. M., Allard, L. F., & Sun, Y.-P. (2002). Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules, 35(25), 9466-9471. doi:10.1021/ma020855r es_ES
dc.description.references Yu, Y.-H., Lin, Y.-Y., Lin, C.-H., Chan, C.-C., & Huang, Y.-C. (2014). High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem., 5(2), 535-550. doi:10.1039/c3py00825h es_ES
dc.description.references Zhang, S., Yin, S., Rong, C., Huo, P., Jiang, Z., & Wang, G. (2013). Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. European Polymer Journal, 49(10), 3125-3134. doi:10.1016/j.eurpolymj.2013.07.011 es_ES
dc.description.references Huang, G., Wang, S., Song, P., Wu, C., Chen, S., & Wang, X. (2014). Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Composites Part A: Applied Science and Manufacturing, 59, 18-25. doi:10.1016/j.compositesa.2013.12.010 es_ES
dc.description.references Chatterjee, S., Nafezarefi, F., Tai, N. H., Schlagenhauf, L., Nüesch, F. A., & Chu, B. T. T. (2012). Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 50(15), 5380-5386. doi:10.1016/j.carbon.2012.07.021 es_ES
dc.description.references Im, H., & Kim, J. (2012). Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon, 50(15), 5429-5440. doi:10.1016/j.carbon.2012.07.029 es_ES
dc.description.references Jiang, X., & Drzal, L. T. (2011). Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes. Composites Part A: Applied Science and Manufacturing, 42(11), 1840-1849. doi:10.1016/j.compositesa.2011.08.011 es_ES
dc.description.references Hwang, S.-H., Park, H. W., Park, Y.-B., Um, M.-K., Byun, J.-H., & Kwon, S. (2013). Electromechanical strain sensing using polycarbonate-impregnated carbon nanotube–graphene nanoplatelet hybrid composite sheets. Composites Science and Technology, 89, 1-9. doi:10.1016/j.compscitech.2013.09.005 es_ES
dc.description.references Chatterjee, S., Nüesch, F. A., & Chu, B. T. T. (2013). Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chemical Physics Letters, 557, 92-96. doi:10.1016/j.cplett.2012.11.091 es_ES
dc.description.references Lahiri, D., Hec, F., Thiesse, M., Durygin, A., Zhang, C., & Agarwal, A. (2014). Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites. Tribology International, 70, 165-169. doi:10.1016/j.triboint.2013.10.012 es_ES
dc.description.references Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198. doi:10.1016/j.progpolymsci.2008.07.008 es_ES
dc.description.references Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412 es_ES
dc.description.references Pegel , S. Villmow , T. Pötschke , P. In Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications McNally , T. Pötschke , P. Woodhead Publishing Cambridge 2011 es_ES
dc.description.references Zhang, R., Moon, K., Lin, W., & Wong, C. P. (2010). Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles. Journal of Materials Chemistry, 20(10), 2018. doi:10.1039/b921072e es_ES
dc.description.references Grossiord, N., Kivit, P. J. J., Loos, J., Meuldijk, J., Kyrylyuk, A. V., van der Schoot, P., & Koning, C. E. (2008). On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer, 49(12), 2866-2872. doi:10.1016/j.polymer.2008.04.033 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem