Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz, M. | es_ES |
dc.contributor.author | Rodríguez, M. C. | es_ES |
dc.contributor.author | Alves, E. | es_ES |
dc.contributor.author | Folch, J.M. | es_ES |
dc.contributor.author | Ibañez Escriche, Noelia | es_ES |
dc.contributor.author | Silió, L. | es_ES |
dc.contributor.author | Fernández, A.I. | es_ES |
dc.date.accessioned | 2020-10-07T03:35:07Z | |
dc.date.available | 2020-10-07T03:35:07Z | |
dc.date.issued | 2013-12-02 | es_ES |
dc.identifier.issn | 1471-2164 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151309 | |
dc.description.abstract | [EN] Background: Porcine fatty acid composition is a key factor for quality and nutritive value of pork. Several QTLs for fatty acid composition have been reported in diverse fat tissues. The results obtained so far seem to point out different genetic control of fatty acid composition conditional on the fat deposits. Those studies have been conducted using simple approaches and most of them focused on one single tissue. The first objective of the present study was to identify tissue-specific and tissue-consistent QTLs for fatty acid composition in backfat and intramuscular fat, combining linkage mapping and GWAS approaches and conducted under single and multitrait models. A second aim was to identify powerful candidate genes for these tissue-consistent QTLs, using microarray gene expression data and following a targeted genetical genomics approach. Results: The single model analyses, linkage and GWAS, revealed over 30 and 20 chromosomal regions, 24 of them identified here for the first time, specifically associated to the content of diverse fatty acids in BF and IMF, respectively. The analyses with multitrait models allowed identifying for the first time with a formal statistical approach seven different regions with pleiotropic effects on particular fatty acids in both fat deposits. The most relevant were found on SSC8 for C16:0 and C16:1(n-7) fatty acids, detected by both linkage and GWAS approaches. Other detected pleiotropic regions included one on SSC1 for C16:0, two on SSC4 for C16:0 and C18:2, one on SSC11 for C20:3 and the last one on SSC17 for C16:0. Finally, a targeted eQTL scan focused on regions showing tissue consistent effects was conducted with Longissimus and fat gene expression data. Some powerful candidate genes and regions were identified such as the PBX1, RGS4, TRIB3 and a transcription regulatory element close to ELOVL6 gene to be further studied. Conclusions: Complementary genome scans have confirmed several chromosome regions previously associated to fatty acid composition in backfat and intramuscular fat, but even more, to identify new ones. Although most of the detected regions were tissue-specific, supporting the hypothesis that the major part of genes affecting fatty acid composition differs among tissues, seven chromosomal regions showed tissue-consistent effects. Additional gene expression analyses have revealed powerful target regions to carry the mutation responsible for the pleiotropic effects. | es_ES |
dc.description.sponsorship | This work was funded by the MICINN project AGL2011-29821-C02 (Ministerio de Economia y Competitividad). We thank to Fabian Garcia, Anna Mercade and Carmen Barragan for their assistance in DNA preparation and SNP genotyping. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | BMC Genomics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fatty acid composition | es_ES |
dc.subject | Pleiotropic effects | es_ES |
dc.subject | QTL scan | es_ES |
dc.subject | EQTL | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/1471-2164-14-845 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2011-29821-C02-02/ES/APLICACION DE METODOS DE SECUENCIACION PARALELA MASIVA Y GENOMICA AL ESTUDIO DE VARIANTES GENICAS QUE REGULAN:CRECIMIENTO,CONFORMACION Y CALIDAD DE CARNE EN CERDO.SUBPROYECTO2/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Muñoz, M.; Rodríguez, MC.; Alves, E.; Folch, J.; Ibañez Escriche, N.; Silió, L.; Fernández, A. (2013). Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics. 14. https://doi.org/10.1186/1471-2164-14-845 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/1471-2164-14-845 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.identifier.pmid | 24295214 | es_ES |
dc.relation.pasarela | S\343536 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Lichtenstein, A. H. (2003). Dietary Fat and Cardiovascular Disease Risk: Quantity or Quality? Journal of Women’s Health, 12(2), 109-114. doi:10.1089/154099903321576493 | es_ES |
dc.description.references | Jiménez-Colmenero, F., Ventanas, J., & Toldrá, F. (2010). Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Science, 84(4), 585-593. doi:10.1016/j.meatsci.2009.10.029 | es_ES |
dc.description.references | Webb, E. C., & O’Neill, H. A. (2008). The animal fat paradox and meat quality. Meat Science, 80(1), 28-36. doi:10.1016/j.meatsci.2008.05.029 | es_ES |
dc.description.references | Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., … Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343-358. doi:10.1016/j.meatsci.2007.07.019 | es_ES |
dc.description.references | Martı́n, L., Timón, M. L., Petrón, M. J., Ventanas, J., & Antequera, T. (2000). Evolution of volatile aldehydes in Iberian ham matured under different processing conditions. Meat Science, 54(4), 333-337. doi:10.1016/s0309-1740(99)00107-2 | es_ES |
dc.description.references | Fernández, A., de Pedro, E., Núñez, N., Silió, L., Garcı́a-Casco, J., & Rodrı́guez, C. (2003). Genetic parameters for meat and fat quality and carcass composition traits in Iberian pigs. Meat Science, 64(4), 405-410. doi:10.1016/s0309-1740(02)00207-3 | es_ES |
dc.description.references | Sellier, P., Maignel, L., & Bidanel, J. P. (2009). Genetic parameters for tissue and fatty acid composition of backfat, perirenal fat and longissimus muscle in Large White and Landrace pigs. animal, 4(4), 497-504. doi:10.1017/s1751731109991261 | es_ES |
dc.description.references | Suzuki, K., Ishida, M., Kadowaki, H., Shibata, T., Uchida, H., & Nishida, A. (2006). Genetic correlations among fatty acid compositions in different sites of fat tissues, meat production, and meat quality traits in Duroc pigs. Journal of Animal Science, 84(8), 2026-2034. doi:10.2527/jas.2005-660 | es_ES |
dc.description.references | Clop, A., Ovilo, C., Perez-Enciso, M., Cercos, A., Tomas, A., Fernandez, A., … Noguera, J. L. (2003). Detection of QTL affecting fatty acid composition in the pig. Mammalian Genome, 14(9), 650-656. doi:10.1007/s00335-002-2210-7 | es_ES |
dc.description.references | Nii, M., Hayashi, T., Tani, F., Niki, A., Mori, N., Fujishima-Kanaya, N., … Mikawa, S. (2006). Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar × Large White intercross. Animal Genetics, 37(4), 342-347. doi:10.1111/j.1365-2052.2006.01485.x | es_ES |
dc.description.references | Ramayo-Caldas, Y., Mercadé, A., Castelló, A., Yang, B., Rodríguez, C., Alves, E., … Folch, J. M. (2012). Genome-wide association study for intramuscular fatty acid composition in an Iberian × Landrace cross1. Journal of Animal Science, 90(9), 2883-2893. doi:10.2527/jas.2011-4900 | es_ES |
dc.description.references | Uemoto, Y., Soma, Y., Sato, S., Ishida, M., Shibata, T., Kadowaki, H., … Suzuki, K. (2011). Genome-wide mapping for fatty acid composition and melting point of fat in a purebred Duroc pig population. Animal Genetics, 43(1), 27-34. doi:10.1111/j.1365-2052.2011.02218.x | es_ES |
dc.description.references | Guo, T., Ren, J., Yang, K., Ma, J., Zhang, Z., & Huang, L. (2009). Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc × Erhualian intercross F2population. Animal Genetics, 40(2), 185-191. doi:10.1111/j.1365-2052.2008.01819.x | es_ES |
dc.description.references | Ramos, A. M., Crooijmans, R. P. M. A., Affara, N. A., Amaral, A. J., Archibald, A. L., Beever, J. E., … Groenen, M. A. M. (2009). Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology. PLoS ONE, 4(8), e6524. doi:10.1371/journal.pone.0006524 | es_ES |
dc.description.references | Corominas, J., Ramayo-Caldas, Y., Puig-Oliveras, A., Pérez-Montarelo, D., Noguera, J. L., Folch, J. M., & Ballester, M. (2013). Polymorphism in the ELOVL6 Gene Is Associated with a Major QTL Effect on Fatty Acid Composition in Pigs. PLoS ONE, 8(1), e53687. doi:10.1371/journal.pone.0053687 | es_ES |
dc.description.references | Ponsuksili, S., Jonas, E., Murani, E., Phatsara, C., Srikanchai, T., Walz, C., … Wimmers, K. (2008). Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. BMC Genomics, 9(1), 367. doi:10.1186/1471-2164-9-367 | es_ES |
dc.description.references | Steibel, J. P., Bates, R. O., Rosa, G. J. M., Tempelman, R. J., Rilington, V. D., Ragavendran, A., … Ernst, C. W. (2011). Genome-Wide Linkage Analysis of Global Gene Expression in Loin Muscle Tissue Identifies Candidate Genes in Pigs. PLoS ONE, 6(2), e16766. doi:10.1371/journal.pone.0016766 | es_ES |
dc.description.references | C�novas, A., Quintanilla, R., Amills, M., & Pena, R. N. (2010). Muscle transcriptomic profiles in pigs with divergent phenotypes for fatness traits. BMC Genomics, 11(1), 372. doi:10.1186/1471-2164-11-372 | es_ES |
dc.description.references | Uemoto, Y., Sato, S., Ohnishi, C., Terai, S., Komatsuda, A., & Kobayashi, E. (2009). The effects of single and epistatic quantitative trait loci for fatty acid composition in a Meishan × Duroc crossbred population. Journal of Animal Science, 87(11), 3470-3476. doi:10.2527/jas.2009-1917 | es_ES |
dc.description.references | Muñoz, M., Alves, E., Ramayo-Caldas, Y., Casellas, J., Rodríguez, C., Folch, J. M., … Fernández, A. I. (2011). Recombination rates across porcine autosomes inferred from high-density linkage maps. Animal Genetics, 43(5), 620-623. doi:10.1111/j.1365-2052.2011.02301.x | es_ES |
dc.description.references | Quintanilla, R., Pena, R. N., Gallardo, D., Cánovas, A., Ramírez, O., Díaz, I., … Amills, M. (2011). Porcine intramuscular fat content and composition are regulated by quantitative trait loci with muscle-specific effects1. Journal of Animal Science, 89(10), 2963-2971. doi:10.2527/jas.2011-3974 | es_ES |
dc.description.references | Liaubet, L., Lobjois, V., Faraut, T., Tircazes, A., Benne, F., Iannuccelli, N., … Cherel, P. (2011). Genetic variability of transcript abundance in pig peri-mortem skeletal muscle: eQTL localized genes involved in stress response, cell death, muscle disorders and metabolism. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-548 | es_ES |
dc.description.references | Mitchell-Olds, T. (2010). Complex-trait analysis in plants. Genome Biology, 11(4), 113. doi:10.1186/gb-2010-11-4-113 | es_ES |
dc.description.references | Scoggan, K. A., Jakobsson, P.-J., & Ford-Hutchinson, A. W. (1997). Production of Leukotriene C4in Different Human Tissues Is Attributable to Distinct Membrane Bound Biosynthetic Enzymes. Journal of Biological Chemistry, 272(15), 10182-10187. doi:10.1074/jbc.272.15.10182 | es_ES |
dc.description.references | JAKOBSSON, A., WESTERBERG, R., & JACOBSSON, A. (2006). Fatty acid elongases in mammals: Their regulation and roles in metabolism. Progress in Lipid Research, 45(3), 237-249. doi:10.1016/j.plipres.2006.01.004 | es_ES |
dc.description.references | Iankova, I., Chavey, C., Clapé, C., Colomer, C., Guérineau, N. C., Grillet, N., … Fajas, L. (2008). Regulator of G Protein Signaling-4 Controls Fatty Acid and Glucose Homeostasis. Endocrinology, 149(11), 5706-5712. doi:10.1210/en.2008-0717 | es_ES |
dc.description.references | Angyal, A., & Kiss-Toth, E. (2012). The tribbles gene family and lipoprotein metabolism. Current Opinion in Lipidology, 23(2), 122-126. doi:10.1097/mol.0b013e3283508c3b | es_ES |
dc.description.references | Óvilo, C., Pérez-Enciso, M., Barragán, C., Clop, A., Rodríguez, C., Oliver, M. A., … Noguera, J. L. (2000). A QTL for intramuscular fat and backfat thickness is located on porcine Chromosome 6. Mammalian Genome, 11(4), 344-346. doi:10.1007/s003350010065 | es_ES |
dc.description.references | Veroneze, R., Lopes, P. S., Guimarães, S. E. F., Silva, F. F., Lopes, M. S., Harlizius, B., & Knol, E. F. (2013). Linkage disequilibrium and haplotype block structure in six commercial pig lines. Journal of Animal Science, 91(8), 3493-3501. doi:10.2527/jas.2012-6052 | es_ES |
dc.description.references | Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16), 9440-9445. doi:10.1073/pnas.1530509100 | es_ES |
dc.description.references | Tsai, S., Cassady, J. P., Freking, B. A., Nonneman, D. J., Rohrer, G. A., & Piedrahita, J. A. (2006). Annotation of the Affymetrix1 porcine genome microarray. Animal Genetics, 37(4), 423-424. doi:10.1111/j.1365-2052.2006.01460.x | es_ES |
dc.description.references | Nyholt, D. R. (2004). A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in Linkage Disequilibrium with Each Other. The American Journal of Human Genetics, 74(4), 765-769. doi:10.1086/383251 | es_ES |
dc.description.references | Moskvina, V., & Schmidt, K. M. (2008). On multiple-testing correction in genome-wide association studies. Genetic Epidemiology, 32(6), 567-573. doi:10.1002/gepi.20331 | es_ES |
dc.description.references | Benjamini, Y., & Yekutieli, D. (2005). Quantitative Trait Loci Analysis Using the False Discovery Rate. Genetics, 171(2), 783-790. doi:10.1534/genetics.104.036699 | es_ES |