Egea, S.; Rego Mañez, A.; Carro, B.; Sánchez-Esguevillas, A.; Lloret, J. (2018). Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast Based-Correlation Feature Selection in Industrial Environments. IEEE Internet of Things. 5(3):1616-1624. https://doi.org/10.1109/JIOT.2017.2787959
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151314
Title:
|
Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast Based-Correlation Feature Selection in Industrial Environments
|
Author:
|
Egea, Santiago
REGO MAÑEZ, ALBERT
Carro, Belén
Sánchez-Esguevillas, Antonio
Lloret, Jaime
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
|
Issued date:
|
|
Abstract:
|
[EN] Internet of Things (IoT) can be combined with machine learning in order to provide intelligent applications to the network nodes. Furthermore, IoT expands these advantages and technologies to the industry. In this ...[+]
[EN] Internet of Things (IoT) can be combined with machine learning in order to provide intelligent applications to the network nodes. Furthermore, IoT expands these advantages and technologies to the industry. In this paper, we propose a modification of one of the most popular algorithms for feature selection, fast-based-correlation feature (FCBF). The key idea is to split the feature space in fragments with the same size. By introducing this division, we can improve the correlation and, therefore, the machine learning applications that are operating on each node. This kind of IoT applications for industry allows us to separate and prioritize the sensor data from the multimedia-related traffic. With this separation, the sensors are able to detect efficiently emergency situations and avoid both material and human damage. The results show the performance of the three FCBF-based algorithms for different problems and different classifiers, confirming the improvements achieved by our approach in terms of model accuracy and execution time.
[-]
|
Subjects:
|
Iot
,
Industry
,
Multimedia traffic
,
Emergency detection
,
Correlation based methods
,
Feature Selection
,
Filter Methods
,
Machine Learning
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
IEEE Internet of Things. (eissn:
2327-4662
)
|
DOI:
|
10.1109/JIOT.2017.2787959
|
Publisher:
|
Institute of Electrical and Electronics Engineers
|
Publisher version:
|
https://doi.org/10.1109/JIOT.2017.2787959
|
Project ID:
|
MINECO/TIN2014-57991-C3-1-P
MINECO/TIN2017-84802-C2-1-P
MECD/FPU15/06837
|
Thanks:
|
This paper was supported in part by the Ministerio de Economia y Competitividad del Gobierno de Espana and the Fondo de Desarrollo Regional within the project Inteligencia distribuida para el control y adaptacion de redes ...[+]
This paper was supported in part by the Ministerio de Economia y Competitividad del Gobierno de Espana and the Fondo de Desarrollo Regional within the project Inteligencia distribuida para el control y adaptacion de redes dinamicas definidas por software under Grant TIN2014-57991-C3-1-P, in part by the Ministerio de Educacion, Cultura y Deporte, through the Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2015) under Grant FPU15/06837, and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the Project TIN2017-84802-C2-1-P. (Corresponding author: Jaime Lloret.)
[-]
|
Type:
|
Artículo
|