Mostrar el registro sencillo del ítem
dc.contributor.author | Fouladi, Farhad | es_ES |
dc.contributor.author | Abkar, Ali | es_ES |
dc.contributor.author | Karapinar, Erdal | es_ES |
dc.date.accessioned | 2020-10-07T09:13:58Z | |
dc.date.available | 2020-10-07T09:13:58Z | |
dc.date.issued | 2020-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/151358 | |
dc.description.abstract | [EN] We introduce the notion of pointwise cyclic-noncyclic relatively nonexpansive pairs involving orbits. We study the best proximity point problem for this class of mappings. We also study the same problem for the class of pointwise noncyclic-noncyclic relatively nonexpansive pairs involving orbits. Finally, under the assumption of weak proximal normal structure, we prove a coincidence quasi-best proximity point theorem for pointwise cyclic-noncyclic relatively nonexpansive pairs involving orbits. Examples are provided to illustrate the observed results. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Pointwise cyclic-noncyclic pairs | es_ES |
dc.subject | Weak proximal normal structure | es_ES |
dc.subject | Coincidence quasi-best proximity point | es_ES |
dc.title | Weak proximal normal structure and coincidence quasi-best proximity points | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2020.13926 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Fouladi, F.; Abkar, A.; Karapinar, E. (2020). Weak proximal normal structure and coincidence quasi-best proximity points. Applied General Topology. 21(2):331-347. https://doi.org/10.4995/agt.2020.13926 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2020.13926 | es_ES |
dc.description.upvformatpinicio | 331 | es_ES |
dc.description.upvformatpfin | 347 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\13926 | es_ES |
dc.description.references | A. Abkar and M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theorey. Appl. 150 (2011), 188-193. https://doi.org/10.1007/s10957-011-9810-x | es_ES |
dc.description.references | A.Abkar and M. Norouzian, Coincidence quasi-best proximity points for quasi-cyclic-noncyclic mappings in convex metric spaces, Iranian Journal of Mathematical Sciences and Informatics, to appear. | es_ES |
dc.description.references | M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. 70 (2009), 3665-3671. https://doi.org/10.1016/j.na.2008.07.022 | es_ES |
dc.description.references | M. S. Brodskii and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk USSR 59 (1948), 837-840 (in Russian). | es_ES |
dc.description.references | M. De la Sen, Some results on fixed and best proximity points of multivalued cyclic self mappings with a partial order, Abst. Appl. Anal. 2013 (2013), Article ID 968492, 11 pages. https://doi.org/10.1155/2013/968492 | es_ES |
dc.description.references | M. De la Sen and R. P. Agarwal, Some fixed point-type results for a class of extended cyclic self mappings with a more general contractive condition, Fixed Point Theory Appl. 59 (2011), 14 pages. https://doi.org/10.1186/1687-1812-2011-59 | es_ES |
dc.description.references | C. Di Bari, T. Suzuki and C. Verto, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. 69 (2008), 3790-3794. https://doi.org/10.1016/j.na.2007.10.014 | es_ES |
dc.description.references | A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math. 171 (2005), 283-293. https://doi.org/10.4064/sm171-3-5 | es_ES |
dc.description.references | R. Espinola, M. Gabeleh and P. Veeramani, On the structure of minimal sets of relatively nonexpansive mappings, Numer. Funct. Anal. Optim. 34 (2013), 845-860. https://doi.org/10.1080/01630563.2013.763824 | es_ES |
dc.description.references | A. F. Leon and M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces, Fixed Point Theory 17 (2016), 63-84. | es_ES |
dc.description.references | M. Gabeleh, A characterization of proximal normal structure via proximal diametral sequences, J. Fixed Point Theory Appl. 19 (2017), 2909-2925. https://doi.org/10.1007/s11784-017-0460-y | es_ES |
dc.description.references | M. Gabeleh, O. Olela Otafudu and N. Shahzad, Coincidence best proximity points in convex metric spaces, Filomat 32 (2018), 1-12. https://doi.org/10.2298/FIL1801001D | es_ES |
dc.description.references | M. Gabeleh, H. Lakzian and N.Shahzad, Best proximity points for asymptotic pointwise contractions, J. Nonlinear Convex Anal. 16 (2015), 83-93. | es_ES |
dc.description.references | E. Karapinar, Best proximity points of Kannan type cyclic weak φ-contractions in ordered metric spaces, An. St. Univ. Ovidius Constanta. 20 (2012), 51-64. https://doi.org/10.2478/v10309-012-0055-y | es_ES |
dc.description.references | H. Aydi, E. Karapinar, I. M. Erhan and P. Salimi, Best proximity points of generalized almost -ψ Geraghty contractive non-self mappings, Fixed Point Theory Appl. 2014:32 (2014). https://doi.org/10.1186/1687-1812-2014-32 | es_ES |
dc.description.references | N. Bilgili, E. Karapinar and K. Sadarangani, A generalization for the best proximity point of Geraghty-contractions, J. Ineqaul. Appl. 2013:286 (2013). https://doi.org/10.1186/1029-242X-2013-286 | es_ES |
dc.description.references | E. Karapinar and I. M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci. 3, no. 3 (2011), 342-353. | es_ES |
dc.description.references | E. Karapinar, Fixed point theory for cyclic weak $phi$-contraction, Appl. Math. Lett. 24, no. 6 (2011), 822-825. https://doi.org/10.1186/1687-1812-2011-69 | es_ES |
dc.description.references | E. Karapinar, G. Petrusel and K. Tas, Best proximity point theorems for KT-types cyclic orbital contraction mappings, Fixed Point Theory 13, no. 2 (2012), 537-546. https://doi.org/10.1186/1687-1812-2012-42 | es_ES |
dc.description.references | W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. https://doi.org/10.2307/2313345 | es_ES |
dc.description.references | W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862. https://doi.org/10.1081/NFA-120026380 | es_ES |
dc.description.references | U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (2005), 89-128. https://doi.org/10.1090/S0002-9947-04-03515-9 | es_ES |
dc.description.references | V. Pragadeeswarar and M. Marudai, Best proximity points: approximation and optimization in partially ordered metric spaces, Optim. Lett. 7 (2013), 1883-1892. https://doi.org/10.1007/s11590-012-0529-x | es_ES |
dc.description.references | T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topological Methods in Nonlin. Anal. 8 (1996), 197-203. https://doi.org/10.12775/TMNA.1996.028 | es_ES |
dc.description.references | T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with to property UC, Nonlinear Anal. 71 (2009), 2918-2926. https://doi.org/10.1016/j.na.2009.01.173 | es_ES |