- -

Discontinuity at fixed point and metric completeness

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Discontinuity at fixed point and metric completeness

Show simple item record

Files in this item

dc.contributor.author Bisht, Ravindra K. es_ES
dc.contributor.author Rakocevic, Vladimir es_ES
dc.date.accessioned 2020-10-07T09:48:00Z
dc.date.available 2020-10-07T09:48:00Z
dc.date.issued 2020-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/151362
dc.description.abstract [EN] In this paper, we prove some new fixed point theorems for a generalized class of Meir-Keeler type mappings, which give some new solutions to the Rhoades open problem regarding the existence of contractive mappings that admit discontinuity at the fixed point. In addition to it, we prove that our theorems characterize completeness of the metric space as well as Cantor's intersection property. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject Completeness es_ES
dc.subject Discontinuity es_ES
dc.subject Cantor's intersection property es_ES
dc.title Discontinuity at fixed point and metric completeness es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2020.13943
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bisht, RK.; Rakocevic, V. (2020). Discontinuity at fixed point and metric completeness. Applied General Topology. 21(2):349-362. https://doi.org/10.4995/agt.2020.13943 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2020.13943 es_ES
dc.description.upvformatpinicio 349 es_ES
dc.description.upvformatpfin 362 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\13943 es_ES
dc.relation.references R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoria dei puntifissi, Boll. Un. Mat. Ital. 5 (1972), 103-108. es_ES
dc.relation.references R. K. Bisht and N. Özgür, Geometric properties of discontinuous fixed point set of $(epsilon-delta)$ contractions and applications to neural networks, Aequat. Math. 94 (2020), 847-863. https://doi.org/10.1007/s00010-019-00680-7 es_ES
dc.relation.references R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed points, J. Math. Anal. Appl. 445 (2017), 1239-1242. https://doi.org/10.1016/j.jmaa.2016.02.053 es_ES
dc.relation.references R. K. Bisht and R. P. Pant, Contractive definitions and discontinuity at fixed point, Appl. Gen. Topol. 18, no. 1 (2017), 173-182. https://doi.org/10.4995/agt.2017.6713 es_ES
dc.relation.references R. K. Bisht and V. Rakocevic , Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory 19, no. 1 (2018), 57-64. https://doi.org/10.24193/fpt-ro.2018.1.06 es_ES
dc.relation.references R. K. Bisht and V. Rakocevic , Fixed points of convex and generalized convex contractions, Rend. Circ. Mat. Palermo, II. Ser., 69, no. 1 (2020), 21-28. https://doi.org/10.1007/s12215-018-0386-2 es_ES
dc.relation.references S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 15-18. es_ES
dc.relation.references Lj. B. Ciric, On contraction type mapping, Math. Balkanica 1 (1971), 52-57. es_ES
dc.relation.references Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45, no. 2 (1974), 267-273. https://doi.org/10.2307/2040075 es_ES
dc.relation.references X. Ding, J. Cao, X. Zhao and F. E. Alsaadi, Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes, Proc. Royal Soc. A: Math. Eng. Phys. Sci. 473 (2017), 20170322. https://doi.org/10.1098/rspa.2017.0322 es_ES
dc.relation.references M. Forti and P. Nistri, Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, no. 11 (2003) 1421-1435. https://doi.org/10.1109/TCSI.2003.818614 es_ES
dc.relation.references H. Garai, L. K. Dey and Y. J. Cho, On contractive mappings and discontinuity at fixed points, Appl. Anal. Discrete Math. 14 (2020), 33-54. https://doi.org/10.2298/AADM181018007G es_ES
dc.relation.references T. L. Hicks and B. E. Rhoades, A Banach type fixed-point theorem, Math. Japon. 24, (1979/80), 327-330. es_ES
dc.relation.references J. Jachymski, Equivalent conditions and Meir-Keeler type theorems, J. Math. Anal. Appl. 194 (1995), 293-303. https://doi.org/10.1006/jmaa.1995.1299 es_ES
dc.relation.references R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76. https://doi.org/10.2307/2316437 es_ES
dc.relation.references R. Kannan, Some results on fixed points-II, Amer. Math. Monthly 76 (1969), 405-408. https://doi.org/10.1080/00029890.1969.12000228 es_ES
dc.relation.references M. Maiti and T. K. Pal, Generalizations of two fixed point theorems, Bull. Calcutta Math. Soc. 70 (1978), 57-61. es_ES
dc.relation.references A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6 es_ES
dc.relation.references L. V. Nguyen, On fixed points of asymptotically regular mappings, Rend. Circ. Mat. Palermo, II. Ser., to appear. es_ES
dc.relation.references X. Nie and W. X. Zheng, On multistability of competitive neural networks with discontinuous activation functions. In: 4th Australian Control Conference (AUCC), (2014) 245-250. https://doi.org/10.1109/AUCC.2014.7358690 es_ES
dc.relation.references X. Nie and W. X. Zheng, Multistability of neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays, Neural Networks 65 (2015), 65-79. https://doi.org/10.1016/j.neunet.2015.01.007 es_ES
dc.relation.references X. Nie and W. X. Zheng, Dynamical behaviors of multiple equilibria in competitive neural networks with discontinuous nonmonotonic piecewise linear activation functions, IEEE Transactions On Cybernatics 46, no. 3 (2015), 679-693.https://doi.org/10.1109/TCYB.2015.2413212 es_ES
dc.relation.references N. Y. Özgür and N. Tas, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conference Proceedings 1926 (2018), 020048. https://doi.org/10.1063/1.5020497 es_ES
dc.relation.references N. Y. Özgür and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42, no. 4 (2019), 1433-1449. https://doi.org/10.1007/s40840-017-0555-z es_ES
dc.relation.references A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31, no. 11 (2017), 3501-3506. https://doi.org/10.2298/FIL1711501P es_ES
dc.relation.references A. Pant, R. P. Pant and M. C. Joshi, Caristi type and Meir-Keeler type fixed point theorems, Filomat 33, no. 12 (2019), 3711-3721. https://doi.org/10.2298/FIL1912711P es_ES
dc.relation.references R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284-289. https://doi.org/10.1006/jmaa.1999.6560 es_ES
dc.relation.references R. P. Pant, Fixed points of Lipschitz type mappings, preprint. es_ES
dc.relation.references R. P. Pant, N. Özgür, N. Tas, A. Pant and M. C. Joshi, New results on discontinuity at fixed point, J. Fixed Point Theory Appl. (2020) 22:39. https://doi.org/10.1007/s11784-020-0765-0 es_ES
dc.relation.references R. P. Pant, N. Y. Özgür and N. Tas, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43 (2020), 499-517. https://doi.org/10.1007/s40840-018-0698-6 es_ES
dc.relation.references R. P. Pant, N. Y. Özgür and N. Tas}, Discontinuity at fixed points with applications, Bulletin of the Belgian Mathematical Society-Simon Stevin 25, no. 4 (2019), 571-589. es_ES
dc.relation.references M. Rashid, I. Batool and N. Mehmood, Discontinuous mappings at their fixed points and common fixed points with applications, J. Math. Anal. 9, no. 1 (2018), 90-104. es_ES
dc.relation.references B. E. Rhoades, Contractive definitions and continuity, Contemporary Mathematics 72 (1988), 233-245. https://doi.org/10.1090/conm/072/956495 es_ES
dc.relation.references I. A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babes-Bolyai Math. 61, no. 3 (2016), 343-358. es_ES
dc.relation.references P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math. 80 (1975), 325-330. https://doi.org/10.1007/BF01472580 es_ES
dc.relation.references T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136, no. 5 (2008), 186-1869. https://doi.org/10.1090/S0002-9939-07-09055-7 es_ES
dc.relation.references N. Tas and N. Y. Özgür, A new contribution to discontinuity at fixed point, Fixed Point Theory 20, no. 2 (2019), 715-728. https://doi.org/10.24193/fpt-ro.2019.2.47 es_ES
dc.relation.references H. Wu and C. Shan, Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses, Appl. Math. Modelling 33, no. 6 (2017), 2564-2574. https://doi.org/10.1016/j.apm.2008.07.022 es_ES
dc.relation.references D. Zheng and P. Wang, Weak -ψ and discontinuity, J. Nonlinear Sci. Appl. 10 (2017), 2318-2323. https://doi.org/10.22436/jnsa.010.05.04 es_ES


This item appears in the following Collection(s)

Show simple item record