- -

Topological distances and geometry over the symmetrized Omega algebra

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Topological distances and geometry over the symmetrized Omega algebra

Show full item record

Alqahtani, M.; Özel, C.; Zekraoui, H. (2020). Topological distances and geometry over the symmetrized Omega algebra. Applied General Topology. 21(2):247-264. https://doi.org/10.4995/agt.2020.13049

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151364

Files in this item

Item Metadata

Title: Topological distances and geometry over the symmetrized Omega algebra
Author: Alqahtani, Mesfer Özel, Cenap Zekraoui, Hanifa
Issued date:
Abstract:
[EN] The aim of this paper is to study some topological distances properties, semidendrites and convexity on th symmetrized omega algebra. Furthermore, some properties and exponents on the symmetrized omega algebra are introduced.[+]
Subjects: Omega Algebra , Dymmetrized Omega algebra , Semidendrite , Exponents , Convex and topology
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2020.13049
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2020.13049
Type: Artículo

References

A. C. F. Bueno, On the exponential function of right circulant matrices, International Journal of Mathematics and Scientific Computing 3, no. 2 (2013).

L. Hörmander, Notions of convexity, Progress in Mathematics 127, Birkh¨auser, Boston- Basel-Berlin (1994).

S. Khalid Nauman, C. Ozel and H. Zekraoui, Abstract Omega algebra that subsumes min and max plus algebras, Turkish Journal of Mathematics and Computer Science 11 (2019) 1-10. [+]
A. C. F. Bueno, On the exponential function of right circulant matrices, International Journal of Mathematics and Scientific Computing 3, no. 2 (2013).

L. Hörmander, Notions of convexity, Progress in Mathematics 127, Birkh¨auser, Boston- Basel-Berlin (1994).

S. Khalid Nauman, C. Ozel and H. Zekraoui, Abstract Omega algebra that subsumes min and max plus algebras, Turkish Journal of Mathematics and Computer Science 11 (2019) 1-10.

G. L. Litvinov, The Maslov dequantization, idempotent and tropical mathematics: a brief introduction, Journal of Mathematical Sciences 140, no. 3 (2007), 426-444. https://doi.org/10.1007/s10958-007-0450-5

D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, 2015. https://doi.org/10.1090/gsm/161

C. Ozel, A. Piekosz, E. Wajch and H. Zekraoui, The minimizing vector theorem in symmetrized max-plus algebra, Journal of Convex Analysis 26, no. 2 (2019), 661-686.

J.-E. Pin, Tropical semirings, Idempotency (Bristol, 1994), 50-69, Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511662508.004

I. Simon, Recognizable sets with multiplicities in the tropical semiring, in: Mathematical Foundations of Computer Science (Carlsbad, 1988), Lecture Notes in Computer Science, vol. 324, Springer, Berlin, 1988, pp. 107-120. https://doi.org/10.1007/BFb0017135

[-]

This item appears in the following Collection(s)

Show full item record