- -

Fixed points for fuzzy quasi-contractions in fuzzy metric spaces endowed with a graph

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fixed points for fuzzy quasi-contractions in fuzzy metric spaces endowed with a graph

Show full item record

Dinarvand, M. (2020). Fixed points for fuzzy quasi-contractions in fuzzy metric spaces endowed with a graph. Applied General Topology. 21(2):177-194. https://doi.org/10.4995/agt.2020.11369

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/151366

Files in this item

Item Metadata

Title: Fixed points for fuzzy quasi-contractions in fuzzy metric spaces endowed with a graph
Author: Dinarvand, Mina
Issued date:
Abstract:
[EN] In this paper, we introduce the notion of G-fuzzy H-quasi-contractions using directed graphs in the setting of fuzzy metric spaces endowed with a graph and we show that this new type of contraction generalizes a large ...[+]
Subjects: Fuzzy metric space , (C)-graph , G-fuzzy quasi-contraction , Fixed point
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2020.11369
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2020.11369
Type: Artículo

References

S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, Some fixed point results on a metric space with a graph, Topology Appl. 159, no. 3 (2012), 659-663. https://doi.org/10.1016/j.topol.2011.10.013

A. Amini-Harandi and D. Mihet, Quasi-contractive mappings in fuzzy metric spaces, Iranian J. Fuzzy Syst. 12, no. 4 (2015), 147-153.

F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. Stiint. Univ. ''Ovidius" Constanta Ser. Mat. 20, no. 1 (2012), 31-40. https://doi.org/10.2478/v10309-012-0003-x [+]
S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, Some fixed point results on a metric space with a graph, Topology Appl. 159, no. 3 (2012), 659-663. https://doi.org/10.1016/j.topol.2011.10.013

A. Amini-Harandi and D. Mihet, Quasi-contractive mappings in fuzzy metric spaces, Iranian J. Fuzzy Syst. 12, no. 4 (2015), 147-153.

F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. Stiint. Univ. ''Ovidius" Constanta Ser. Mat. 20, no. 1 (2012), 31-40. https://doi.org/10.2478/v10309-012-0003-x

F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal. 75 (2012), 3895-3901. https://doi.org/10.1016/j.na.2012.02.009

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976. https://doi.org/10.1007/978-1-349-03521-2

S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727-730.

Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45, no. 2 (1974), 267-273. https://doi.org/10.2307/2040075

M. Dinarvand, Fixed point results for $(varphi,psi)$-contractions in metric spaces endowed with a graph, Mat. Vesn. 69, no. 1 (2017), 23-38.

M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4

V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7

G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canadian Math. Bull. 16 (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0

J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136, no. 4 (2008), 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76. https://doi.org/10.2307/2316437

I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetica 11, no. 5 (1975), 336-344.

A. Petrusel and I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134, no. 2 (2006), 411-418. https://doi.org/10.1090/S0002-9939-05-07982-7

S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972), 26-42.

B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4

S. Shukla, Fixed point theorems of G-fuzzy contractions in fuzzy metric spaces endowed with a graph, Commun. Math. 22 (2014), 1-12. https://doi.org/10.1186/1687-1812-2014-127

D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 222 (2013), 108-114. https://doi.org/10.1016/j.fss.2013.01.012

L. A. Zadeh, Fuzzy Sets, Inform. Control, 10, no. 1 (1960), 385-389.

[-]

This item appears in the following Collection(s)

Show full item record