S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, Some fixed point results on a metric space with a graph, Topology Appl. 159, no. 3 (2012), 659-663. https://doi.org/10.1016/j.topol.2011.10.013
A. Amini-Harandi and D. Mihet, Quasi-contractive mappings in fuzzy metric spaces, Iranian J. Fuzzy Syst. 12, no. 4 (2015), 147-153.
F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. Stiint. Univ. ''Ovidius" Constanta Ser. Mat. 20, no. 1 (2012), 31-40. https://doi.org/10.2478/v10309-012-0003-x
[+]
S. M. A. Aleomraninejad, Sh. Rezapour and N. Shahzad, Some fixed point results on a metric space with a graph, Topology Appl. 159, no. 3 (2012), 659-663. https://doi.org/10.1016/j.topol.2011.10.013
A. Amini-Harandi and D. Mihet, Quasi-contractive mappings in fuzzy metric spaces, Iranian J. Fuzzy Syst. 12, no. 4 (2015), 147-153.
F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. Stiint. Univ. ''Ovidius" Constanta Ser. Mat. 20, no. 1 (2012), 31-40. https://doi.org/10.2478/v10309-012-0003-x
F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal. 75 (2012), 3895-3901. https://doi.org/10.1016/j.na.2012.02.009
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976. https://doi.org/10.1007/978-1-349-03521-2
S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727-730.
Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45, no. 2 (1974), 267-273. https://doi.org/10.2307/2040075
M. Dinarvand, Fixed point results for $(varphi,psi)$-contractions in metric spaces endowed with a graph, Mat. Vesn. 69, no. 1 (2017), 23-38.
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canadian Math. Bull. 16 (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0
J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136, no. 4 (2008), 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76. https://doi.org/10.2307/2316437
I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetica 11, no. 5 (1975), 336-344.
A. Petrusel and I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134, no. 2 (2006), 411-418. https://doi.org/10.1090/S0002-9939-05-07982-7
S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972), 26-42.
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4
S. Shukla, Fixed point theorems of G-fuzzy contractions in fuzzy metric spaces endowed with a graph, Commun. Math. 22 (2014), 1-12. https://doi.org/10.1186/1687-1812-2014-127
D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 222 (2013), 108-114. https://doi.org/10.1016/j.fss.2013.01.012
L. A. Zadeh, Fuzzy Sets, Inform. Control, 10, no. 1 (1960), 385-389.
[-]