- -

The class of simple dynamics systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The class of simple dynamics systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ali Akbar, Kamaludheen es_ES
dc.date.accessioned 2020-10-07T10:37:12Z
dc.date.available 2020-10-07T10:37:12Z
dc.date.issued 2020-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/151369
dc.description.abstract [EN] In this paper, we study the class of simple dynamical systems on R induced by continuous maps having finitely many non-ordinary points. We characterize this class using labeled digraphs and dynamically independent sets. In fact, we classify dynamical systems up to their number of non-ordinary points. In particular, we discuss about the class of continuous maps having unique non-ordinary point, and the class of continuous maps having exactly two non-ordinary points. es_ES
dc.description.sponsorship The author is very thankful to the referee for giving valuable suggestions. The author acknowledges SERB-MATRICS Grant No. MTR/2018/000256 for financial support. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Special points es_ES
dc.subject Non-ordinary points es_ES
dc.subject Critical points es_ES
dc.subject Order conjugacy es_ES
dc.subject Order isomorphism es_ES
dc.subject Labeled digraph es_ES
dc.subject Dynamically independent set es_ES
dc.title The class of simple dynamics systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2020.12929
dc.relation.projectID info:eu-repo/grantAgreement/DST//MTR%2F2018%2F000256/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ali Akbar, K. (2020). The class of simple dynamics systems. Applied General Topology. 21(2):215-233. https://doi.org/10.4995/agt.2020.12929 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2020.12929 es_ES
dc.description.upvformatpinicio 215 es_ES
dc.description.upvformatpfin 233 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\12929 es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.description.references K. Ali Akbar, Some results in linear, symbolic, and general topological dynamics, Ph. D. Thesis, University of Hyderabad (2010). es_ES
dc.description.references K. Ali Akbar, V. Kannan and I. Subramania Pillai, Simple dynamical systems, Applied General Topology 2, no. 2 (2019), 307-324. https://doi.org/10.4995/agt.2019.7910 es_ES
dc.description.references A. Brown and C. Pearcy, An introduction to analysis (Graduate Texts in Mathematics), Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-0787-0 es_ES
dc.description.references R. A. Holmgren, A first course in discrete dynamical systems, Springer-Verlag, NewYork, 1996. https://doi.org/10.1007/978-1-4419-8732-7 es_ES
dc.description.references S. Patinkin, Transitivity implies period 6, preprint. es_ES
dc.description.references A. N. Sharkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukr. Math. J. 16 (1964), 61-71. es_ES
dc.description.references J. Smital, A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), 54-56. https://doi.org/10.2307/2044350 es_ES
dc.description.references B. Sankara Rao, I. Subramania Pillai and V. Kannan, The set of dynamically special points, Aequationes Mathematicae 82, no. 1-2 (2011), 81-90. https://doi.org/10.1007/s00010-010-0066-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem