H. Arslan, I. Karaca and A. Oztel, Homology groups of $n-$ dimensional digital images, XXI Turkish National Mathematics Symposium (2008); B1-13.
A. Borat and T. Vergili, Digital lusternik-schnirelmann category, Turkish J. Math. 42, no.4 (2018), 1845-1852. https://doi.org/10.3906/mat-1801-94
L. Boxer, Digitally continuous functions, Pattern Recognit. Lett. 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
[+]
H. Arslan, I. Karaca and A. Oztel, Homology groups of $n-$ dimensional digital images, XXI Turkish National Mathematics Symposium (2008); B1-13.
A. Borat and T. Vergili, Digital lusternik-schnirelmann category, Turkish J. Math. 42, no.4 (2018), 1845-1852. https://doi.org/10.3906/mat-1801-94
L. Boxer, Digitally continuous functions, Pattern Recognit. Lett. 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
L. Boxer, A classical construction for the digital fundamental group, J. Math. Im. Vis. 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
L. Boxer, Properties of digital homotopy, J. Math. Im. Vis. 22 (2005), 19-26. https://doi.org/10.1007/s10851-005-4780-y
L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Im. Vis. 24 (2006), 167-175. https://doi.org/10.1007/s10851-005-3619-x
L. Boxer, Digital products, wedges, and covering spaces. J. Math. Im. Vis. 25 (2006), 169-171. https://doi.org/10.1007/s10851-006-9698-5
L. Boxer and I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci. 11, no. 4 (2012), 161-180.
L. Boxer and P. C. Staecker, Fundamental groups and Euler characteristics of sphere-like digital images, Appl. Gen. Topol. 17, no.2 (2016), 139-158. https://doi.org/10.4995/agt.2016.4624
L. Chen and J. Zhang, Digital manifolds: an intuitive definition and some properties, Proceedings of the Second ACM/SIGGRAPH Symposium on Solid Modeling and Applications (1993), 459-460. https://doi.org/10.1145/164360.164511
L. Chen, Discrete surfaces and manifolds: a theory of digital-discrete geometry and topology, Rockville, MD, Scientific & Practical Computing, 2004.
L. Chen and Y. Rong, Digital topological method for computing genus and the betti numbers, Topol. Appl. 157, no. 12 (2010), 1931-1936. https://doi.org/10.1016/j.topol.2010.04.006
A. Dranishnikov, Topological complexity of wedges and covering maps, Proc. Amer. Math. Soc. 142, no. 12 (2014), 4365-4376. https://doi.org/10.1090/S0002-9939-2014-12146-0
O. Ege and I. Karaca, Fundamental properties of simplicial homology groups for digital images, Am. J. Comp. Tech. Appl. 1 (2013), 25-43.
O. Ege and I. Karaca, Cohomology theory for digital images, Romanian J. Inf. Sci. Tech. 16, no.1 (2013), 10-28. https://doi.org/10.1186/1687-1812-2013-253
O. Ege and I. Karaca, Digital fibrations, Proc. Nat. Academy Sci. India Sec. A, 87 (2017), 109-114. https://doi.org/10.1007/s40010-016-0302-0
M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29, (2003), 211-221. https://doi.org/10.1007/s00454-002-0760-9
M. Farber, Invitation to Topological Robotics. Zur. Lect. Adv. Math., EMS, 2008. https://doi.org/10.4171/054
M. Farber and M. Grant, Robot motion planning, weights of cohomology classes, and cohomology operations, Proc. Amer. Math. Soc. 136, no.9 (2008), 3339-3349. https://doi.org/10.1090/S0002-9939-08-09529-4
M. Farber, S. Tabachnikov and S. Yuzvinsky, Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. 34, (2003), 1850-1870. https://doi.org/10.1155/S1073792803210035
S. E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Inf. Sci. 177 (2007), 3314-3326. https://doi.org/10.1016/j.ins.2006.12.013
G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graph. Models Im. Proc. 55 (1993), 381-396. https://doi.org/10.1006/cgip.1993.1029
I. Karaca and M. Is, Digital topological complexity numbers, Turkish J. Math. 42, no. 6 (2018), 3173-3181. https://doi.org/10.3906/mat-1807-101
I. Karaca and T. Vergili, Fiber bundles in digital images, Proceeding of 2nd International Symposium on Computing in Science and Engineering 700, no. 67 (2011), 1260-1265.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces. Proceedings IEEE International Conference on Systems, Man, and Cybernetics (1987), 227-234.
T. Y. Kong, A digital fundamental group, Comp. Graph. 13 (1989), 159-166. https://doi.org/10.1016/0097-8493(89)90058-7
G. Lupton, J. Oprea and N. Scoville, Homotopy theory on digital topology, (2019), arXiv:1905.07783[math.AT].
Y. Rudyak, On higher analogs of topological complexity, Topol. Appl 157, no. 5 (2010), 916-920. https://doi.org/10.1016/j.topol.2009.12.007
A. S. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl. 55, no. 2 (1966), 49-140. https://doi.org/10.1090/trans2/055/03
E. Spanier, Algebraic Topology. New York, USA, McGraw-Hill, 1966. https://doi.org/10.1007/978-1-4684-9322-1_5
T. tom Dieck, Algebraic Topology, Zurich, Switzerland: EMS Textbooks in Mathematics, EMS, 2008. https://doi.org/10.4171/048
[-]