- -

ONCOhabitats: A system for glioblastoma heterogeneity assessment through MRI

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ONCOhabitats: A system for glioblastoma heterogeneity assessment through MRI

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juan -Albarracín, Javier es_ES
dc.contributor.author Fuster García, Elíes es_ES
dc.contributor.author García-Ferrando, Germán Adrián es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.date.accessioned 2020-10-14T03:30:58Z
dc.date.available 2020-10-14T03:30:58Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 1386-5056 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151658
dc.description.abstract [EN] Background: Neuroimaging analysis is currently crucial for an early assessment of glioblastoma, to help improving treatment and tumor follow-up. To this end, multiple functional and morphological MRI sequences are usually employed, requiring the development of automated tools capable to extract the relevant information from these sources. In this work we present ONCOhabitats (https://www.oncohabitats.upv.es): an online open access system for glioblastoma analysis based on MRI data. Methods: ONCOhabitats provides two main services for untreated glioblastomas: (1) malignant tissue segmentation, and (2) vascular heterogeneity assessment of the tumor. The segmentation service implements a deep patch-wise 3D Convolutional Neural Network with residual connections. The vascular heterogeneity assessment service implements the Hemodynamic Tissue Signature (HTS) method patented in P201431289, which aims to identify habitats within the tumor with early prognostic capabilities. Results: The segmentation service was validated against the BRATS 2017 reference dataset, showing comparable results with current state-of-the-art methods (whole tumor Dice segmentation: 0.89). The vascular heterogeneity assessment service was validated in a retrospective cohort of 50 patients, in a study focused on predicting patient overall survival based on the HTS habitats. Cox proportional hazard regression analysis and Kaplan-Meier survival study showed significant positive correlations (p-value < .05) between the HTS habitats and patient overall survival. ONCOhabitats system also generates radiological reports for each service, including volumetries and perfusion measurements of the different regions of the lesion. Conclusion: ONCOhabitats system provides open-access services for glioblastoma heterogeneity assessment, implementing consolidated state-of-the-art techniques for medical image analysis. Additionally, we also give access to the scientific community to our computational resources, offering a computational capacity of about 300 cases per day. es_ES
dc.description.sponsorship This study is partially supported by H2020 European Institute of Innovation and Technology (POC-2016.SPAIN-07), Secretaria de Estado de Investigacion, Desarrollo e Innovacion (DPI2016-80054-R, TIN2013-43457-R) and CaixaImpulse program from Fundacio Bancaria "La Caixa" (LCF/TR/CI16/10010016). E.F.G acknowledges the support of NVIDIA GPU Grant Program. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Medical Informatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Glioblastoma segmentation es_ES
dc.subject Perfusion quantification es_ES
dc.subject Heterogeneity assessment es_ES
dc.subject Online system es_ES
dc.subject Deep learning es_ES
dc.subject Unsupervised learning es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title ONCOhabitats: A system for glioblastoma heterogeneity assessment through MRI es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijmedinf.2019.05.002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FTR%2FCI16%2F10010016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R/ES/CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-80054-R/ES/BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EIT Health//POC-2016-SPAIN-07/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Juan -Albarracín, J.; Fuster García, E.; García-Ferrando, GA.; Garcia-Gomez, JM. (2019). ONCOhabitats: A system for glioblastoma heterogeneity assessment through MRI. International Journal of Medical Informatics. 128:53-61. https://doi.org/10.1016/j.ijmedinf.2019.05.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijmedinf.2019.05.002 es_ES
dc.description.upvformatpinicio 53 es_ES
dc.description.upvformatpfin 61 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 128 es_ES
dc.identifier.pmid 31160012 es_ES
dc.relation.pasarela S\387751 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder EIT Health es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem