Mostrar el registro sencillo del ítem
dc.contributor.author | Juan -Albarracín, Javier | es_ES |
dc.contributor.author | Fuster García, Elíes | es_ES |
dc.contributor.author | García-Ferrando, Germán Adrián | es_ES |
dc.contributor.author | Garcia-Gomez, Juan M | es_ES |
dc.date.accessioned | 2020-10-14T03:30:58Z | |
dc.date.available | 2020-10-14T03:30:58Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.issn | 1386-5056 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/151658 | |
dc.description.abstract | [EN] Background: Neuroimaging analysis is currently crucial for an early assessment of glioblastoma, to help improving treatment and tumor follow-up. To this end, multiple functional and morphological MRI sequences are usually employed, requiring the development of automated tools capable to extract the relevant information from these sources. In this work we present ONCOhabitats (https://www.oncohabitats.upv.es): an online open access system for glioblastoma analysis based on MRI data. Methods: ONCOhabitats provides two main services for untreated glioblastomas: (1) malignant tissue segmentation, and (2) vascular heterogeneity assessment of the tumor. The segmentation service implements a deep patch-wise 3D Convolutional Neural Network with residual connections. The vascular heterogeneity assessment service implements the Hemodynamic Tissue Signature (HTS) method patented in P201431289, which aims to identify habitats within the tumor with early prognostic capabilities. Results: The segmentation service was validated against the BRATS 2017 reference dataset, showing comparable results with current state-of-the-art methods (whole tumor Dice segmentation: 0.89). The vascular heterogeneity assessment service was validated in a retrospective cohort of 50 patients, in a study focused on predicting patient overall survival based on the HTS habitats. Cox proportional hazard regression analysis and Kaplan-Meier survival study showed significant positive correlations (p-value < .05) between the HTS habitats and patient overall survival. ONCOhabitats system also generates radiological reports for each service, including volumetries and perfusion measurements of the different regions of the lesion. Conclusion: ONCOhabitats system provides open-access services for glioblastoma heterogeneity assessment, implementing consolidated state-of-the-art techniques for medical image analysis. Additionally, we also give access to the scientific community to our computational resources, offering a computational capacity of about 300 cases per day. | es_ES |
dc.description.sponsorship | This study is partially supported by H2020 European Institute of Innovation and Technology (POC-2016.SPAIN-07), Secretaria de Estado de Investigacion, Desarrollo e Innovacion (DPI2016-80054-R, TIN2013-43457-R) and CaixaImpulse program from Fundacio Bancaria "La Caixa" (LCF/TR/CI16/10010016). E.F.G acknowledges the support of NVIDIA GPU Grant Program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Medical Informatics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Glioblastoma segmentation | es_ES |
dc.subject | Perfusion quantification | es_ES |
dc.subject | Heterogeneity assessment | es_ES |
dc.subject | Online system | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Unsupervised learning | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | ONCOhabitats: A system for glioblastoma heterogeneity assessment through MRI | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijmedinf.2019.05.002 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FTR%2FCI16%2F10010016/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R/ES/CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-80054-R/ES/BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EIT Health//POC-2016-SPAIN-07/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Juan -Albarracín, J.; Fuster García, E.; García-Ferrando, GA.; Garcia-Gomez, JM. (2019). ONCOhabitats: A system for glioblastoma heterogeneity assessment through MRI. International Journal of Medical Informatics. 128:53-61. https://doi.org/10.1016/j.ijmedinf.2019.05.002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijmedinf.2019.05.002 | es_ES |
dc.description.upvformatpinicio | 53 | es_ES |
dc.description.upvformatpfin | 61 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 128 | es_ES |
dc.identifier.pmid | 31160012 | es_ES |
dc.relation.pasarela | S\387751 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | EIT Health | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |