- -

Sliding Mode Reference Coordination of Constrained Feedback Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sliding Mode Reference Coordination of Constrained Feedback Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vignoni, Alejandro es_ES
dc.contributor.author Garelli, Fabricio es_ES
dc.contributor.author Picó, Jesús es_ES
dc.date.accessioned 2020-10-17T03:32:17Z
dc.date.available 2020-10-17T03:32:17Z
dc.date.issued 2013 es_ES
dc.identifier.issn 1024-123X es_ES
dc.identifier.uri http://hdl.handle.net/10251/152266
dc.description.abstract [EN] This paper addresses the problem of coordinating dynamical systems with possibly different dynamics (e.g., linear and nonlinear, different orders, constraints, etc.) to achieve some desired collective behavior under the constraints and capabilities of each system. To this end, we develop a new methodology based on reference conditioning techniques using geometric set invariance and sliding mode control: the sliding mode reference coordination (SMRCoord). The main idea is to coordinate the systems references. Starting from a general framework, we propose two approaches: a local one through direct interactions between the different systems by sharing and conditioning their own references and a global centralized one, where a central node makes decisions using information coming from the systems references. In particular, in this work we focus in implementation on multivariable systems like unmanned aerial vehicles (UAVs) and robustness to external perturbations. To show the applicability of the approach, the problem of coordinating UAVs with input constraints is addressed as a particular case of multivariable reference coordination with both global and local configuration. es_ES
dc.description.sponsorship Research in this area is partially supported by Argentine government (ANPCyT PICT 2011-0888 and CONICET PIP 112-2011-00361), Spanish government (FEDER-CICYT DPI2011-28112-C04-01), and Universitat Politecnica de Valencia (Grant FPI/2009-21) es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Mathematical Problems in Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Sliding Mode Reference Coordination of Constrained Feedback Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/764348 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI%2F2009-21/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//CONICET PIP 112-2011-00361/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2011-0888/AR/Sistemas conmutados de control. Aplicación al control de procesos y sistemas con restricciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-01/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Vignoni, A.; Garelli, F.; Picó, J. (2013). Sliding Mode Reference Coordination of Constrained Feedback Systems. Mathematical Problems in Engineering. 2013:1-11. https://doi.org/10.1155/2013/764348 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2013/764348 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.pasarela S\254398 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia Tecnología y Telecomunicaciones de Costa Rica es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.description.references Information consensus in multivehicle cooperative control. (2007). IEEE Control Systems, 27(2), 71-82. doi:10.1109/mcs.2007.338264 es_ES
dc.description.references Cao, Y., Yu, W., Ren, W., & Chen, G. (2013). An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination. IEEE Transactions on Industrial Informatics, 9(1), 427-438. doi:10.1109/tii.2012.2219061 es_ES
dc.description.references Interconnected dynamic systems: An overview on distributed control. (2013). IEEE Control Systems, 33(1), 76-88. doi:10.1109/mcs.2012.2225929 es_ES
dc.description.references Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE, 95(1), 215-233. doi:10.1109/jproc.2006.887293 es_ES
dc.description.references He, W., & Cao, J. (2011). Consensus control for high-order multi-agent systems. IET Control Theory & Applications, 5(1), 231. doi:10.1049/iet-cta.2009.0191 es_ES
dc.description.references Liu, L. (2012). Robust cooperative output regulation problem for non-linear multi-agent systems. IET Control Theory & Applications, 6(13), 2142-2148. doi:10.1049/iet-cta.2011.0575 es_ES
dc.description.references Pitarch, J. L., Sala, A., & Arino, C. V. (2014). Closed-Form Estimates of the Domain of Attraction for Nonlinear Systems via Fuzzy-Polynomial Models. IEEE Transactions on Cybernetics, 44(4), 526-538. doi:10.1109/tcyb.2013.2258910 es_ES
dc.description.references Nuñez, S., De Battista, H., Garelli, F., Vignoni, A., & Picó, J. (2013). Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses. Control Engineering Practice, 21(9), 1259-1265. doi:10.1016/j.conengprac.2013.03.003 es_ES
dc.description.references Wu, L., Su, X., & Shi, P. (2012). Sliding mode control with bounded gain performance of Markovian jump singular time-delay systems. Automatica, 48(8), 1929-1933. doi:10.1016/j.automatica.2012.05.064 es_ES
dc.description.references Cao, Y., Ren, W., & Meng, Z. (2010). Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Systems & Control Letters, 59(9), 522-529. doi:10.1016/j.sysconle.2010.06.002 es_ES
dc.description.references Cortés, J. (2006). Finite-time convergent gradient flows with applications to network consensus. Automatica, 42(11), 1993-2000. doi:10.1016/j.automatica.2006.06.015 es_ES
dc.description.references Rao, S., & Ghose, D. (2011). Sliding mode control-based algorithms for consensus in connected swarms. International Journal of Control, 84(9), 1477-1490. doi:10.1080/00207179.2011.602834 es_ES
dc.description.references Guo, P., Zhang, J., Lyu, M., & Bo, Y. (2013). Sliding Mode Control for Multiagent System with Time-Delay and Uncertainties: An LMI Approach. Mathematical Problems in Engineering, 2013, 1-12. doi:10.1155/2013/805492 es_ES
dc.description.references Garelli, F., Mantz, R. J., & De Battista, H. (2006). Limiting interactions in decentralized control of MIMO systems. Journal of Process Control, 16(5), 473-483. doi:10.1016/j.jprocont.2005.09.001 es_ES
dc.description.references Garelli, F., Mantz, R. J., & De Battista, H. (2007). Sliding mode compensation to preserve dynamic decoupling of stable systems. Chemical Engineering Science, 62(17), 4705-4716. doi:10.1016/j.ces.2007.05.020 es_ES
dc.description.references Picó, J., Garelli, F., De Battista, H., & Mantz, R. J. (2009). Geometric invariance and reference conditioning ideas for control of overflow metabolism. Journal of Process Control, 19(10), 1617-1626. doi:10.1016/j.jprocont.2009.08.007 es_ES
dc.description.references Revert, A., Garelli, F., Pico, J., De Battista, H., Rossetti, P., Vehi, J., & Bondia, J. (2013). Safety Auxiliary Feedback Element for the Artificial Pancreas in Type 1 Diabetes. IEEE Transactions on Biomedical Engineering, 60(8), 2113-2122. doi:10.1109/tbme.2013.2247602 es_ES
dc.description.references Gracia, L., Sala, A., & Garelli, F. (2012). A supervisory loop approach to fulfill workspace constraints in redundant robots. Robotics and Autonomous Systems, 60(1), 1-15. doi:10.1016/j.robot.2011.07.008 es_ES
dc.description.references Gracia, L., Garelli, F., & Sala, A. (2013). Integrated sliding-mode algorithms in robot tracking applications. Robotics and Computer-Integrated Manufacturing, 29(1), 53-62. doi:10.1016/j.rcim.2012.07.007 es_ES
dc.description.references Vignoni, A., Garelli, F., & Picó, J. (2013). Coordinación de sistemas con diferentes dinámicas utilizando conceptos de invarianza geométrica y modos deslizantes. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(4), 390-401. doi:10.1016/j.riai.2013.09.001 es_ES
dc.description.references Hanus, R., Kinnaert, M., & Henrotte, J.-L. (1987). Conditioning technique, a general anti-windup and bumpless transfer method. Automatica, 23(6), 729-739. doi:10.1016/0005-1098(87)90029-x es_ES
dc.description.references Mareczek, J., Buss, M., & Spong, M. W. (2002). Invariance control for a class of cascade nonlinear systems. IEEE Transactions on Automatic Control, 47(4), 636-640. doi:10.1109/9.995041 es_ES
dc.description.references Blasco, X., García-Nieto, S., & Reynoso-Meza, G. (2012). Control autónomo del seguimiento de trayectorias de un vehículo cuatrirrotor. Simulación y evaluación de propuestas. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 194-199. doi:10.1016/j.riai.2012.01.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem