Mostrar el registro sencillo del ítem
dc.contributor.author | Vignoni, Alejandro | es_ES |
dc.contributor.author | Garelli, Fabricio | es_ES |
dc.contributor.author | Picó, Jesús | es_ES |
dc.date.accessioned | 2020-10-17T03:32:17Z | |
dc.date.available | 2020-10-17T03:32:17Z | |
dc.date.issued | 2013 | es_ES |
dc.identifier.issn | 1024-123X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152266 | |
dc.description.abstract | [EN] This paper addresses the problem of coordinating dynamical systems with possibly different dynamics (e.g., linear and nonlinear, different orders, constraints, etc.) to achieve some desired collective behavior under the constraints and capabilities of each system. To this end, we develop a new methodology based on reference conditioning techniques using geometric set invariance and sliding mode control: the sliding mode reference coordination (SMRCoord). The main idea is to coordinate the systems references. Starting from a general framework, we propose two approaches: a local one through direct interactions between the different systems by sharing and conditioning their own references and a global centralized one, where a central node makes decisions using information coming from the systems references. In particular, in this work we focus in implementation on multivariable systems like unmanned aerial vehicles (UAVs) and robustness to external perturbations. To show the applicability of the approach, the problem of coordinating UAVs with input constraints is addressed as a particular case of multivariable reference coordination with both global and local configuration. | es_ES |
dc.description.sponsorship | Research in this area is partially supported by Argentine government (ANPCyT PICT 2011-0888 and CONICET PIP 112-2011-00361), Spanish government (FEDER-CICYT DPI2011-28112-C04-01), and Universitat Politecnica de Valencia (Grant FPI/2009-21) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Limited | es_ES |
dc.relation.ispartof | Mathematical Problems in Engineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Sliding Mode Reference Coordination of Constrained Feedback Systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/764348 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI%2F2009-21/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICET//CONICET PIP 112-2011-00361/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT-2011-0888/AR/Sistemas conmutados de control. Aplicación al control de procesos y sistemas con restricciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-01/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Vignoni, A.; Garelli, F.; Picó, J. (2013). Sliding Mode Reference Coordination of Constrained Feedback Systems. Mathematical Problems in Engineering. 2013:1-11. https://doi.org/10.1155/2013/764348 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2013/764348 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.pasarela | S\254398 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia Tecnología y Telecomunicaciones de Costa Rica | es_ES |
dc.contributor.funder | Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.description.references | Information consensus in multivehicle cooperative control. (2007). IEEE Control Systems, 27(2), 71-82. doi:10.1109/mcs.2007.338264 | es_ES |
dc.description.references | Cao, Y., Yu, W., Ren, W., & Chen, G. (2013). An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination. IEEE Transactions on Industrial Informatics, 9(1), 427-438. doi:10.1109/tii.2012.2219061 | es_ES |
dc.description.references | Interconnected dynamic systems: An overview on distributed control. (2013). IEEE Control Systems, 33(1), 76-88. doi:10.1109/mcs.2012.2225929 | es_ES |
dc.description.references | Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE, 95(1), 215-233. doi:10.1109/jproc.2006.887293 | es_ES |
dc.description.references | He, W., & Cao, J. (2011). Consensus control for high-order multi-agent systems. IET Control Theory & Applications, 5(1), 231. doi:10.1049/iet-cta.2009.0191 | es_ES |
dc.description.references | Liu, L. (2012). Robust cooperative output regulation problem for non-linear multi-agent systems. IET Control Theory & Applications, 6(13), 2142-2148. doi:10.1049/iet-cta.2011.0575 | es_ES |
dc.description.references | Pitarch, J. L., Sala, A., & Arino, C. V. (2014). Closed-Form Estimates of the Domain of Attraction for Nonlinear Systems via Fuzzy-Polynomial Models. IEEE Transactions on Cybernetics, 44(4), 526-538. doi:10.1109/tcyb.2013.2258910 | es_ES |
dc.description.references | Nuñez, S., De Battista, H., Garelli, F., Vignoni, A., & Picó, J. (2013). Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses. Control Engineering Practice, 21(9), 1259-1265. doi:10.1016/j.conengprac.2013.03.003 | es_ES |
dc.description.references | Wu, L., Su, X., & Shi, P. (2012). Sliding mode control with bounded gain performance of Markovian jump singular time-delay systems. Automatica, 48(8), 1929-1933. doi:10.1016/j.automatica.2012.05.064 | es_ES |
dc.description.references | Cao, Y., Ren, W., & Meng, Z. (2010). Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Systems & Control Letters, 59(9), 522-529. doi:10.1016/j.sysconle.2010.06.002 | es_ES |
dc.description.references | Cortés, J. (2006). Finite-time convergent gradient flows with applications to network consensus. Automatica, 42(11), 1993-2000. doi:10.1016/j.automatica.2006.06.015 | es_ES |
dc.description.references | Rao, S., & Ghose, D. (2011). Sliding mode control-based algorithms for consensus in connected swarms. International Journal of Control, 84(9), 1477-1490. doi:10.1080/00207179.2011.602834 | es_ES |
dc.description.references | Guo, P., Zhang, J., Lyu, M., & Bo, Y. (2013). Sliding Mode Control for Multiagent System with Time-Delay and Uncertainties: An LMI Approach. Mathematical Problems in Engineering, 2013, 1-12. doi:10.1155/2013/805492 | es_ES |
dc.description.references | Garelli, F., Mantz, R. J., & De Battista, H. (2006). Limiting interactions in decentralized control of MIMO systems. Journal of Process Control, 16(5), 473-483. doi:10.1016/j.jprocont.2005.09.001 | es_ES |
dc.description.references | Garelli, F., Mantz, R. J., & De Battista, H. (2007). Sliding mode compensation to preserve dynamic decoupling of stable systems. Chemical Engineering Science, 62(17), 4705-4716. doi:10.1016/j.ces.2007.05.020 | es_ES |
dc.description.references | Picó, J., Garelli, F., De Battista, H., & Mantz, R. J. (2009). Geometric invariance and reference conditioning ideas for control of overflow metabolism. Journal of Process Control, 19(10), 1617-1626. doi:10.1016/j.jprocont.2009.08.007 | es_ES |
dc.description.references | Revert, A., Garelli, F., Pico, J., De Battista, H., Rossetti, P., Vehi, J., & Bondia, J. (2013). Safety Auxiliary Feedback Element for the Artificial Pancreas in Type 1 Diabetes. IEEE Transactions on Biomedical Engineering, 60(8), 2113-2122. doi:10.1109/tbme.2013.2247602 | es_ES |
dc.description.references | Gracia, L., Sala, A., & Garelli, F. (2012). A supervisory loop approach to fulfill workspace constraints in redundant robots. Robotics and Autonomous Systems, 60(1), 1-15. doi:10.1016/j.robot.2011.07.008 | es_ES |
dc.description.references | Gracia, L., Garelli, F., & Sala, A. (2013). Integrated sliding-mode algorithms in robot tracking applications. Robotics and Computer-Integrated Manufacturing, 29(1), 53-62. doi:10.1016/j.rcim.2012.07.007 | es_ES |
dc.description.references | Vignoni, A., Garelli, F., & Picó, J. (2013). Coordinación de sistemas con diferentes dinámicas utilizando conceptos de invarianza geométrica y modos deslizantes. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(4), 390-401. doi:10.1016/j.riai.2013.09.001 | es_ES |
dc.description.references | Hanus, R., Kinnaert, M., & Henrotte, J.-L. (1987). Conditioning technique, a general anti-windup and bumpless transfer method. Automatica, 23(6), 729-739. doi:10.1016/0005-1098(87)90029-x | es_ES |
dc.description.references | Mareczek, J., Buss, M., & Spong, M. W. (2002). Invariance control for a class of cascade nonlinear systems. IEEE Transactions on Automatic Control, 47(4), 636-640. doi:10.1109/9.995041 | es_ES |
dc.description.references | Blasco, X., García-Nieto, S., & Reynoso-Meza, G. (2012). Control autónomo del seguimiento de trayectorias de un vehículo cuatrirrotor. Simulación y evaluación de propuestas. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 194-199. doi:10.1016/j.riai.2012.01.001 | es_ES |