- -

Automatic Tuning to Performance Modelling of Matrix Polynomials on Multicore and Multi-GPU Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Tuning to Performance Modelling of Matrix Polynomials on Multicore and Multi-GPU Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boratto, Murilo es_ES
dc.contributor.author Alonso-Jordá, Pedro es_ES
dc.contributor.author Gimenez, Domingo es_ES
dc.contributor.author Lastovetsky, Alexey es_ES
dc.date.accessioned 2020-10-17T03:32:33Z
dc.date.available 2020-10-17T03:32:33Z
dc.date.issued 2017-01 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152271
dc.description.abstract [EN] Automatic tuning methodologies have been used in the design of routines in recent years. The goal of these methodologies is to develop routines which automatically adapt to the conditions of the underlying computational system so that efficient executions are obtained independently of the end- user experience. This paper aims to explore programming routines that can automatically be adapted to the computational system conditions thanks to these automatic tuning methodologies. In particular, we have worked on the evaluation of matrix polynomials on multicore and multi-GPU systems as a target application. This application is very useful for the computation of matrix functions like the sine or cosine but, at the same time, the application is very time consuming since the basic computational kernel, which is the matrix multiplication, is carried out many times. The use of all available resources within a node in an easy and efficient way is crucial for the end user. es_ES
dc.description.sponsorship This work has been partially supported by Generalitat Valenciana under Grant PROM-ETEOII/2014/003, and by the Spanish MINECO, as well as European Commission FEDER funds, under Grant TEC2015-67387-C4-1-R and TIN2015-66972-C5-3-R, and network CAPAP-H. Also, we have work in cooperation with the EU-COST Programme Action IC1305, "Network for Sustainable Ultrascale Computing (NESUS)". es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automatic Tuning es_ES
dc.subject Matrix Polynomials es_ES
dc.subject Performance es_ES
dc.subject Multicore es_ES
dc.subject Multi-GPU es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Automatic Tuning to Performance Modelling of Matrix Polynomials on Multicore and Multi-GPU Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-016-1694-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//IC1305/EU/Network for Sustainable Ultrascale Computing (NESUS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-3-R/ES/TECNICAS PARA LA MEJORA DE LAS PRESTACIONES, FIABILIDAD Y CONSUMO DE ENERGIA DE LOS SERVIDORES. OPTIMIZACION DE APLICACIONES CIENTIFICAS, MEDICAS Y DE VISION ARTIFICIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Boratto, M.; Alonso-Jordá, P.; Gimenez, D.; Lastovetsky, A. (2017). Automatic Tuning to Performance Modelling of Matrix Polynomials on Multicore and Multi-GPU Systems. The Journal of Supercomputing. 73(1):227-239. https://doi.org/10.1007/s11227-016-1694-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-016-1694-y es_ES
dc.description.upvformatpinicio 227 es_ES
dc.description.upvformatpfin 239 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 73 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\302771 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Alberti PV, Alonso P, Vidal AM, Cuenca J, Giménez D (2004) Designing polylibraries to speed up linear algebra computations. IJHPCN 1(1/2/3):75–84 es_ES
dc.description.references Alonso P, Boratto M, Pinilla J, Ibañez J, Martinez J (2014) On the evaluation of matrix polynomials using several GPGPUs. Tech Rep Riunet/E10251/39615 es_ES
dc.description.references Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Croz JD, Greenbaum A, Hammarling S, McKenney A, Ostrouchov S, Sorensen D (2013) LAPACK users guide, 2nd edn. SIAM, Philadelphia es_ES
dc.description.references Blackford LS, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley RC (2001) An updated set of basic linear algebra subprograms (blas). ACM Trans Math Softw 28:135–151 es_ES
dc.description.references Caron E, Uter F (2002) Parallel extension of a dynamic performance forecasting tool. Sci Ann Cuza Univ 11:80–93 es_ES
dc.description.references Chandra R (2001) Parallel programming in OpenMP. Morgan Kaufmann, Burlington es_ES
dc.description.references Demmel J, Marques O, Parlett BN, Vömel C (2008) Performance and accuracy of LAPACK’s symmetric tridiagonal eigensolvers. SIAM J.Sci Comput 30(3):1508–1526 es_ES
dc.description.references Frigo M, Johnson S (1998) FFTW: an adaptive software architecture for the FFT. In: Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing vol. 3, pp 1381–1384 es_ES
dc.description.references García L, Cuenca J, Giménez D (2007) Including improvement of the execution time in a software architecture of libraries with self-optimisation. In: ICSOFT 2007, Proceedings of the Second International Conference on Software and Data Technologies, Volume SE, Barcelona, Spain, pp 156–161, 22–25 July es_ES
dc.description.references García LP, Cuenca J, Giménez D (2014) On optimization techniques for the matrix multiplication on hybrid cpu+gpu platforms. Ann Multicore GPU Program 1(1):10–18 es_ES
dc.description.references Hasanov K, Quintin JN, Lastovetsky A (2014) Hierarchical approach to optimization of parallel matrix multiplication on large-scale platforms. J Supercomput 71(11):24–34 es_ES
dc.description.references Katagiri T, Kise K, Honda H (2005) RAO-SS: a prototype of run-time auto-tuning facility for sparse direct solvers. Tech Rep 22(1):1–10 es_ES
dc.description.references Katagiri T, Kise K, Honda H, Yuba T (2004) Effect of auto-tuning with user’s knowledge for numerical software. Proceedings of the 1st conference on computing frontiers, Ischia, Italy. ACM, New York, NY, USA, pp 12–25 es_ES
dc.description.references Nath R, Tomov S, Dongarra J (2010) An improved magma gemm for fermi graphics processing units. Int J High Perform Comput Appl 24(4):511–515 es_ES
dc.description.references Paterson MS, Stockmeyer LJ (1973) On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J Comput 2(1):60–66 es_ES
dc.description.references PLASMA (2015) Parallel linear algebra software for multicore architectures. Available in: http://www.netlib.org/plasma/ . Accessed 1 June 2015 es_ES
dc.description.references Tanaka T, Katagiri T, Yuba T (2007) D-spline based incremental parameter estimation in automatic performance tuning. In: International Conference on Applied Parallel Computing: State of the Art in Scientific Computing, PARA’06. Springer-Verlag, Berlin, Heidelberg, pp 986–995 es_ES
dc.description.references Vuduc R, Demmel J, Bilmes J (2004) Statistical models for empirical search-based performance tuning. Int J High Perform Comput Appl 18:65–94 es_ES
dc.description.references Whaley RC, Petitet A, Dongarra JJ (2001) Automated empirical optimizations of software and the ATLAS project. Parallel Comput 27:21–37 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem