- -

An Exact Algorithm for the Shortest Path Problem With Position-Based Learning Effects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Exact Algorithm for the Shortest Path Problem With Position-Based Learning Effects

Mostrar el registro completo del ítem

Wang, Y.; Li, X.; Ruiz García, R. (2017). An Exact Algorithm for the Shortest Path Problem With Position-Based Learning Effects. IEEE Transactions on Systems Man and Cybernetics - Part A Systems and Humans. 47(11):3037-3049. https://doi.org/10.1109/TSMC.2016.2560418

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/152276

Ficheros en el ítem

Metadatos del ítem

Título: An Exact Algorithm for the Shortest Path Problem With Position-Based Learning Effects
Autor: Wang, Yamin Li, Xiaoping Ruiz García, Rubén
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] The shortest path problems (SPPs) with learning effects (SPLEs) have many potential and interesting applications. However, at the same time they are very complex and have not been studied much in the literature. In ...[+]
Palabras clave: A* search , Admissibility , Learning effect , Shortest path
Derechos de uso: Reserva de todos los derechos
Fuente:
IEEE Transactions on Systems Man and Cybernetics - Part A Systems and Humans. (issn: 1083-4427 )
DOI: 10.1109/TSMC.2016.2560418
Editorial:
Institute of Electrical and Electronics Engineers
Versión del editor: https://doi.org/10.1109/TSMC.2016.2560418
Código del Proyecto:
info:eu-repo/grantAgreement/NSFC//61572127/
info:eu-repo/grantAgreement/NSFC//61272377/
info:eu-repo/grantAgreement/MOE//20120092110027/
info:eu-repo/grantAgreement/MINECO//DPI2012-36243-C02-01/ES/REALISTIC EXTENDED SCHEDULING USING LIGHT TECHNIQUES/
Agradecimientos:
This work was supported in part by the National Natural Science Foundation of China under Grant 61572127 and Grant 61272377, and in part by the Specialized Research Fund for the Doctoral Program of Higher Education under ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem