Mostrar el registro sencillo del ítem
dc.contributor.author | RODRIGO BORT, MIGUEL | es_ES |
dc.contributor.author | Martínez Climent, Andreu | es_ES |
dc.contributor.author | Liberos Mascarell, Alejandro | es_ES |
dc.contributor.author | Fernández-Avilés, Francisco | es_ES |
dc.contributor.author | Berenfeld, Omer | es_ES |
dc.contributor.author | Atienza, Felipe | es_ES |
dc.contributor.author | Guillem Sánchez, María Salud | es_ES |
dc.date.accessioned | 2020-10-17T03:32:53Z | |
dc.date.available | 2020-10-17T03:32:53Z | |
dc.date.issued | 2017-09 | es_ES |
dc.identifier.issn | 1941-3149 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152280 | |
dc.description.abstract | [EN] [Background] Phase mapping has become a broadly used technique to identify atrial reentrant circuits for ablative therapy guidance. This work studies the phase mapping process and how the signal nature and its filtering affect the reentrant pattern characterization in electrogram (EGM), body surface potential mapping, and electrocardiographic imaging signals. [Methods and Results] EGM, body surface potential mapping, and electrocardiographic imaging phase maps were obtained from 17 simulations of atrial fibrillation, atrial flutter, and focal atrial tachycardia. Reentrant activity was identified by singularity point recognition in raw signals and in signals after narrow band-pass filtering at the highest dominant frequency (HDF). Reentrant activity was dominantly present in the EGM recordings only for atrial fibrillation and some atrial flutter propagations patterns, and HDF filtering allowed increasing the reentrant activity detection from 60% to 70% of time in atrial fibrillation in unipolar recordings and from 0% to 62% in bipolar. In body surface potential mapping maps, HDF filtering increased from 10% to 90% the sensitivity, although provoked a residual false reentrant activity ¿30% of time. In electrocardiographic imaging, HDF filtering allowed to increase ¿100% the time with detected rotors, although provoked the apparition of false rotors during 100% of time. Nevertheless, raw electrocardiographic imaging phase maps presented reentrant activity just in atrial fibrillation recordings accounting for ¿80% of time. [Conclusions] Rotor identification is accurate and sensitive and does not require additional signal processing in measured or noninvasively computed unipolar EGMs. Bipolar EGMs and body surface potential mapping do require HDF filtering to detect rotors at the expense of a decreased specificity. | es_ES |
dc.description.sponsorship | This study was supported, in part, by Universitat Politecnica de Valencia through its research initiative program; Generalitat Valenciana Grants (ACIF/2013/021); the Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain: PI13-01882, PI13-00903, PI14/00857, PI16/01123, TEC2013-46067-R, DTS16/0160, and IJCI-2014-22178); Spanish Society of Cardiology (Grant for Clinical Research in Cardiology 2015); Spanish Ministry of Science and Innovation (Red RIC RD12.0042.0001); and the National Heart, Lung, and Blood Institute (P01-HL039707, P01-HL087226, and Q1 R01-HL118304) and cofounded by FEDER. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Ovid Technologies Wolters Kluwer -American Heart Association | es_ES |
dc.relation.ispartof | Circulation Arrhythmia and Electrophysiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Atrial flutter | es_ES |
dc.subject | Body surface potential mapping | es_ES |
dc.subject | Electrocardiography | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1161/CIRCEP.117.005008 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI13%2F01882/ES/Estudio preclínico de la implantación de parches de tejido cardiaco bioartificial electromecánicamente entrenados en un modelo de infarto de miocardio porcino/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01HL118304/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P01HL087226/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P01HL039707/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI14%2F00857/ES/Caracterización No-invasiva de los Mecanismos de Mantenimiento de la Fibrilación Auricular. Estudio PERSONALIZE-AF/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2013-46067-R/ES/ESTIMACION NO INVASIVA DE LA ACTIVIDAD ELECTRICA CARDIACA MEDIANTE OPTIMIZACION CONVEXA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DTS16%2F00160/ES/Guiado en Tiempo Real de la Ablación de la Fibrilación Auricular mediante Cartografía Eléctrica Global (CORIFY)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2014-22178/ES/IJCI-2014-22178/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0042%2F0001/ES/Enfermedades cardiovasculares/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F021/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI13%2F00903/ES/Estudio preclínico de la implantación de parches de tejido cardiaco bioartificial electromecánicamente entrenados en un modelo de infarto de miocardio porcino. Desarrollo de bioreactores con estimulación electromecánica./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Rodrigo Bort, M.; Martínez Climent, A.; Liberos Mascarell, A.; Fernández-Avilés, F.; Berenfeld, O.; Atienza, F.; Guillem Sánchez, MS. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation Arrhythmia and Electrophysiology. 10(9):1-13. https://doi.org/10.1161/CIRCEP.117.005008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1161/CIRCEP.117.005008 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 28887361 | es_ES |
dc.relation.pasarela | S\356318 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Sociedad Española de Cardiología | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | National Heart, Lung, and Blood Institute, EEUU | es_ES |
dc.description.references | Allessie, M., & de Groot, N. (2014). CrossTalk opposing view: Rotors have not been demonstrated to be the drivers of atrial fibrillation. The Journal of Physiology, 592(15), 3167-3170. doi:10.1113/jphysiol.2014.271809 | es_ES |
dc.description.references | Narayan, S. M., & Zaman, J. A. B. (2016). Mechanistically based mapping of human cardiac fibrillation. The Journal of Physiology, 594(9), 2399-2415. doi:10.1113/jp270513 | es_ES |
dc.description.references | Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011 | es_ES |
dc.description.references | Narayan, S. M., Krummen, D. E., Clopton, P., Shivkumar, K., & Miller, J. M. (2013). Direct or Coincidental Elimination of Stable Rotors or Focal Sources May Explain Successful Atrial Fibrillation Ablation. Journal of the American College of Cardiology, 62(2), 138-147. doi:10.1016/j.jacc.2013.03.021 | es_ES |
dc.description.references | Berenfeld, O., Ennis, S., Hwang, E., Hooven, B., Grzeda, K., Mironov, S., … Jalife, J. (2011). Time- and frequency-domain analyses of atrial fibrillation activation rate: The optical mapping reference. Heart Rhythm, 8(11), 1758-1765. doi:10.1016/j.hrthm.2011.05.007 | es_ES |
dc.description.references | Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75-78. doi:10.1038/32164 | es_ES |
dc.description.references | Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013 | es_ES |
dc.description.references | Vijayakumar, R., Vasireddi, S. K., Cuculich, P. S., Faddis, M. N., & Rudy, Y. (2016). Methodology Considerations in Phase Mapping of Human Cardiac Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 9(11). doi:10.1161/circep.116.004409 | es_ES |
dc.description.references | Guillem, M. S., Climent, A. M., Millet, J., Arenal, Á., Fernández-Avilés, F., Jalife, J., … Berenfeld, O. (2013). Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology, 6(2), 294-301. doi:10.1161/circep.112.000167 | es_ES |
dc.description.references | Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421 | es_ES |
dc.description.references | Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6 | es_ES |
dc.description.references | Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620 | es_ES |
dc.description.references | Garcia-Molla, V. M., Liberos, A., Vidal, A., Guillem, M. S., Millet, J., Gonzalez, A., … Climent, A. M. (2014). Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Computers in Biology and Medicine, 44, 15-26. doi:10.1016/j.compbiomed.2013.10.023 | es_ES |
dc.description.references | Rodrigo, M., Climent, A. M., Liberos, A., Calvo, D., Fernández-Avilés, F., Berenfeld, O., … Guillem, M. S. (2016). Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis. Annals of Biomedical Engineering, 44(8), 2364-2376. doi:10.1007/s10439-015-1534-x | es_ES |
dc.description.references | PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931 | es_ES |
dc.description.references | Zlochiver, S., Yamazaki, M., Kalifa, J., & Berenfeld, O. (2008). Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 5(6), 846-854. doi:10.1016/j.hrthm.2008.03.010 | es_ES |
dc.description.references | ALHUSSEINI, M., VIDMAR, D., MECKLER, G. L., KOWALEWSKI, C. A., SHENASA, F., WANG, P. J., … RAPPEL, W.-J. (2017). Two Independent Mapping Techniques Identify Rotational Activity Patterns at Sites of Local Termination During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 28(6), 615-622. doi:10.1111/jce.13177 | es_ES |