Mostrar el registro sencillo del ítem
dc.contributor.author | RODRIGO BORT, MIGUEL | es_ES |
dc.contributor.author | Climent Martínez, Batiste Andreu | es_ES |
dc.contributor.author | Liberos Mascarell, Alejandro | es_ES |
dc.contributor.author | Fernández-Avilés, Francisco | es_ES |
dc.contributor.author | Atienza, Felipe | es_ES |
dc.contributor.author | Guillem Sánchez, María Salud | es_ES |
dc.contributor.author | Berenfeld, Omer | es_ES |
dc.date.accessioned | 2020-10-20T03:31:06Z | |
dc.date.available | 2020-10-20T03:31:06Z | |
dc.date.issued | 2017-08 | es_ES |
dc.identifier.issn | 0147-8389 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152476 | |
dc.description.abstract | [EN] Background: Ablation of drivers maintaining atrial fibrillation (AF) has been demonstrated as an effective therapy. Drivers in the form of rapidly activated atrial regions can be noninvasively localized to either left or right atria (LA, RA) with body surface potential mapping (BSPM) systems. This study quantifies the accuracy of dominant frequency (DF) measurements from reduced-leads BSPM systems and assesses the minimal configuration required for ablation guidance. Methods: Nine uniformly distributed lead sets of eight to 66 electrodes were evaluated. BSPM signals were registered simultaneously with intracardiac electrocardiograms (EGMs) in 16 AF patients. DF activity was analyzed on the surface potentials for the nine leads configurations, and the noninvasive measures were compared with the EGM recordings. Results: Surface DF measurements presented similar values than panoramic invasive EGM recordings, showing the highest DF regions in corresponding locations. The noninvasive DFs measures had a high correlation with the invasive discrete recordings; they presented a deviation of <0.5 Hz for the highest DF and a correlation coefficient of >0.8 for leads configurations with 12 or more electrodes. Conclusions: Reduced-leads BSPM systems enable noninvasive discrimination between LA versus RA DFs with similar results as higher-resolution 66-leads system. Our findings demonstrate the possible incorporation of simplified BSPM systems into clinical planning procedures for AF ablation. | es_ES |
dc.description.sponsorship | This work was supported in part by Generalitat-Valenciana Grants [ACIF/2013/021]; Instituto de SaludCarlos III, Ministerio de Ciencia e Innovacion [PI13/00903, PI13-01882, PI14/00857, PI16/01123, TEC2013-46067-R, DTS16/0160 and IJCI-2014-22178] cofound by FEDER.; Spanish Society of Cardiology [Clinical research Grants 2015]; Ministerio de Ciencia e Innovacion [Red RICRD12.0042.0001]; and the National Heart, Lung, and Blood Institute [P01-HL039707, P01-HL087226 and R01-HL118304]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Pacing and Clinical Electrophysiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Body surface potential mapping | es_ES |
dc.subject | Dominant frequency | es_ES |
dc.subject | Electrocardiography | es_ES |
dc.subject | Lead distribution | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/pace.13133 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI13%2F01882/ES/Estudio preclínico de la implantación de parches de tejido cardiaco bioartificial electromecánicamente entrenados en un modelo de infarto de miocardio porcino/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01HL118304/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P01HL087226/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//P01HL039707/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI14%2F00857/ES/Caracterización No-invasiva de los Mecanismos de Mantenimiento de la Fibrilación Auricular. Estudio PERSONALIZE-AF/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2013-46067-R/ES/ESTIMACION NO INVASIVA DE LA ACTIVIDAD ELECTRICA CARDIACA MEDIANTE OPTIMIZACION CONVEXA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DTS16%2F00160/ES/Guiado en Tiempo Real de la Ablación de la Fibrilación Auricular mediante Cartografía Eléctrica Global (CORIFY)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2014-22178/ES/IJCI-2014-22178/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0042%2F0001/ES/Enfermedades cardiovasculares/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F021/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI13%2F00903/ES/Estudio preclínico de la implantación de parches de tejido cardiaco bioartificial electromecánicamente entrenados en un modelo de infarto de miocardio porcino. Desarrollo de bioreactores con estimulación electromecánica./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Rodrigo Bort, M.; Climent Martínez, BA.; Liberos Mascarell, A.; Fernández-Avilés, F.; Atienza, F.; Guillem Sánchez, MS.; Berenfeld, O. (2017). Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation. Pacing and Clinical Electrophysiology. 40(8):940-946. https://doi.org/10.1111/pace.13133 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/pace.13133 | es_ES |
dc.description.upvformatpinicio | 940 | es_ES |
dc.description.upvformatpfin | 946 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 40 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.pmid | 28586103 | es_ES |
dc.identifier.pmcid | PMC5568955 | es_ES |
dc.relation.pasarela | S\342889 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Sociedad Española de Cardiología | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | National Heart, Lung, and Blood Institute, EEUU | es_ES |
dc.description.references | Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053 | es_ES |
dc.description.references | Narayan, S. M., Krummen, D. E., Clopton, P., Shivkumar, K., & Miller, J. M. (2013). Direct or Coincidental Elimination of Stable Rotors or Focal Sources May Explain Successful Atrial Fibrillation Ablation. Journal of the American College of Cardiology, 62(2), 138-147. doi:10.1016/j.jacc.2013.03.021 | es_ES |
dc.description.references | Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421 | es_ES |
dc.description.references | Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024 | es_ES |
dc.description.references | Lim, H. S., Zellerhoff, S., Derval, N., Denis, A., Yamashita, S., Berte, B., … Haissaguerre, M. (2015). Noninvasive Mapping to Guide Atrial Fibrillation Ablation. Cardiac Electrophysiology Clinics, 7(1), 89-98. doi:10.1016/j.ccep.2014.11.004 | es_ES |
dc.description.references | Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013 | es_ES |
dc.description.references | Guillem, M. S., Climent, A. M., Millet, J., Arenal, Á., Fernández-Avilés, F., Jalife, J., … Berenfeld, O. (2013). Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology, 6(2), 294-301. doi:10.1161/circep.112.000167 | es_ES |
dc.description.references | Lux, R. L., Smith, C. R., Wyatt, R. F., & Abildskov, J. A. (1978). Limited Lead Selection for Estimation of Body Surface Potential Maps in Electrocardiography. IEEE Transactions on Biomedical Engineering, BME-25(3), 270-276. doi:10.1109/tbme.1978.326332 | es_ES |
dc.description.references | Finlay, D. D., Nugent, C. D., Donnelly, M. P., & Black, N. D. (2008). Selection of optimal recording sites for limited lead body surface potential mapping in myocardial infarction and left ventricular hypertrophy. Journal of Electrocardiology, 41(3), 264-271. doi:10.1016/j.jelectrocard.2008.02.009 | es_ES |
dc.description.references | Guillem, M. S., Castells, F., Climent, A. M., Bodí, V., Chorro, F. J., & Millet, J. (2008). Evaluation of lead selection methods for optimal reconstruction of body surface potentials. Journal of Electrocardiology, 41(1), 26-34. doi:10.1016/j.jelectrocard.2007.07.001 | es_ES |
dc.description.references | De la Salud Guillem, M., Bollmann, A., Climent, A. M., Husser, D., Millet-Roig, J., & Castells, F. (2009). How Many Leads Are Necessary for a Reliable Reconstruction of Surface Potentials During Atrial Fibrillation? IEEE Transactions on Information Technology in Biomedicine, 13(3), 330-340. doi:10.1109/titb.2008.2011894 | es_ES |
dc.description.references | Castells, F., Mora, C., Rieta, J. J., Moratal-Pérez, D., & Millet, J. (2005). Estimation of atrial fibrillatory wave from single-lead atrial fibrillation electrocardiograms using principal component analysis concepts. Medical & Biological Engineering & Computing, 43(5), 557-560. doi:10.1007/bf02351028 | es_ES |
dc.description.references | Narayan, S. M., & Jalife, J. (2014). CrossTalk proposal: Rotors have been demonstrated to drive human atrial fibrillation. The Journal of Physiology, 592(15), 3163-3166. doi:10.1113/jphysiol.2014.271031 | es_ES |
dc.description.references | Allessie, M., & de Groot, N. (2014). CrossTalk opposing view: Rotors have not been demonstrated to be the drivers of atrial fibrillation. The Journal of Physiology, 592(15), 3167-3170. doi:10.1113/jphysiol.2014.271809 | es_ES |
dc.description.references | Berenfeld, O., & Oral, H. (2012). The quest for rotors in atrial fibrillation: Different nets catch different fishes. Heart Rhythm, 9(9), 1440-1441. doi:10.1016/j.hrthm.2012.04.029 | es_ES |
dc.description.references | PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931 | es_ES |
dc.description.references | Uijen, G., van Oosterom, A., & Hoekema, R. (1999). The Number of Independent Signals in Body Surface Maps. Methods of Information in Medicine, 38(02), 119-124. doi:10.1055/s-0038-1634176 | es_ES |
dc.description.references | Ihara, Z., van Oosterom, A., Jacquemet, V., & Hoekema, R. (2007). Adaptation of the standard 12-lead electrocardiogram system dedicated to the analysis of atrial fibrillation. Journal of Electrocardiology, 40(1), 68.e1-68.e8. doi:10.1016/j.jelectrocard.2006.04.006 | es_ES |
dc.description.references | Gerstenfeld, E. P., SippensGroenewegen, A., Lux, R. L., & Lesh, M. D. (2000). Derivation of an optimal lead set for measuring ectopic atrial activation from the pulmonary veins by using body surface mapping. Journal of Electrocardiology, 33, 179-185. doi:10.1054/jelc.2000.20307 | es_ES |
dc.description.references | SippensGroenewegen, A., Peeters, H. A. P., Jessurun, E. R., Linnenbank, A. C., Robles de Medina, E. O., Lesh, M. D., & van Hemel, N. M. (1998). Body Surface Mapping During Pacing at Multiple Sites in the Human Atrium. Circulation, 97(4), 369-380. doi:10.1161/01.cir.97.4.369 | es_ES |
dc.description.references | SALINET, J. L., TUAN, J. H., SANDILANDS, A. J., STAFFORD, P. J., SCHLINDWEIN, F. S., & NG, G. A. (2013). Distinctive Patterns of Dominant Frequency Trajectory Behavior in Drug-Refractory Persistent Atrial Fibrillation: Preliminary Characterization of Spatiotemporal Instability. Journal of Cardiovascular Electrophysiology, 25(4), 371-379. doi:10.1111/jce.12331 | es_ES |
dc.description.references | Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 | es_ES |
dc.description.references | Atienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., … Berenfeld, O. (2006). Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans. Circulation, 114(23), 2434-2442. doi:10.1161/circulationaha.106.633735 | es_ES |