Mostrar el registro sencillo del ítem
dc.contributor.author | López-Maldonado, Griselda | es_ES |
dc.contributor.author | De Oña, J. | es_ES |
dc.contributor.author | Abellán, J. | es_ES |
dc.date.accessioned | 2020-10-21T03:31:10Z | |
dc.date.available | 2020-10-21T03:31:10Z | |
dc.date.issued | 2012-10-03 | es_ES |
dc.identifier.issn | 1877-0428 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152714 | |
dc.description.abstract | [EN] The World Health Organization (WHO) considers that traffic accidents are major public health problem worldwide, for this reason safety managers try to identify the main factors affecting the severity as consequence of road accidents. In order to identify these factors, in this paper, Data Mining (DM) techniques such as Decision Trees (DTs), have been used. A dataset of traffic accidents on rural roads in the province of Granada (Spain) have been analyzed. DTs allow certain decision rules to be extracted. These rules could be used in future road safety campaigns and would enable managers to implement certain priority actions. (C) 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of SIIV2012 Scientific Committee | es_ES |
dc.description.sponsorship | The authors are grateful to the Spanish General Directorate of Traffic (DGT) for providing the data necessary for this research. Griselda Lopez wishes to express her acknowledgement to the regional ministry of Economy, Innovation and Science of the regional government of Andalusia (Spain) for their scholarship to train teachers and researchers in Deficit Areas, which has made this work possible. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Procedia - Social and Behavioral Sciences | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Driver injury severity | es_ES |
dc.subject | Logistic-Regression | es_ES |
dc.subject | Models | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.title | Using decision trees to extract decision rules from police reports on road accidents | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1016/j.sbspro.2012.09.864 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports | es_ES |
dc.description.bibliographicCitation | López-Maldonado, G.; De Oña, J.; Abellán, J. (2012). Using decision trees to extract decision rules from police reports on road accidents. Procedia - Social and Behavioral Sciences. 53:106-114. https://doi.org/10.1016/j.sbspro.2012.09.864 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 5th International Congress - Sustainability of Road Infrastructures | es_ES |
dc.relation.conferencedate | Octubre 29-31,2012 | es_ES |
dc.relation.conferenceplace | Rome, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.sbspro.2012.09.864 | es_ES |
dc.description.upvformatpinicio | 106 | es_ES |
dc.description.upvformatpfin | 114 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.relation.pasarela | S\399213 | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | Dirección General de Tráfico |