- -

Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Neto, Ana I. es_ES
dc.contributor.author Cibrao, Ana C. es_ES
dc.contributor.author Correia, Clara R. es_ES
dc.contributor.author Carvalho, Rita R. es_ES
dc.contributor.author Luz, Gisela M. es_ES
dc.contributor.author Ferrer, GG es_ES
dc.contributor.author Botelho, Gabriela es_ES
dc.contributor.author Picart, Catherine es_ES
dc.contributor.author Alves, Natalia M. es_ES
dc.contributor.author Mano, Joao F. es_ES
dc.date.accessioned 2020-10-22T03:31:43Z
dc.date.available 2020-10-22T03:31:43Z
dc.date.issued 2014-06-25 es_ES
dc.identifier.issn 1613-6810 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152794
dc.description.abstract [EN] In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4-dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, dopamine-modified hyaluronic acid (HA-DN) prepared by carbodiimide chemistry is used to form thin and surface-adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films are developed based on chitosan and HA-DN to form polymeric coatings using the layer-by-layer methodology. The nanostructured films formation is monitored by quartz crystal microbalance. The film surface is characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements are also conducted. The adhesion properties are analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests show an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications. es_ES
dc.description.sponsorship The authors want to acknowledge the COST Action TD0906 - Biological adhesives: from biology to biomimetics. The authors also acknowledge the financial support from the Fundacao para a Ciencia e para a Tecnologia through the Ph.D. grants with the references SFRH/BD/73119/2010 and SFRH/BD/69529/2010. G. G. Ferrer acknowledges the support of the Spanish Ministry of Science and Innovation for the mobility grant JC2008-00135. G. Botelho acknowledges the NMR portuguese network (PTNMR, Bruker Avance III 400-Univ. Minho es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Small es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/smll.201303568 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F69529%2F2010/PT/NATURAL POLYELETROLYTE MULTILAYERS ON MICROCAPSULES/MICROPARTICLES FOR CARTILAGE TISSUE ENGINEERING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JC2008-00135/ES/JC2008-00135/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F73119%2F2010/PT/COMBINATORY ANALYSIS OF MARINE BASED BIO-NANOMATERIALS: HIGH-THROUGHPUT ANALYSIS OF THE EFFECT OF NANOSTRUCTURED MULTILLAYERS USING MARINE-ORIGIN & MARINE-INSPIRED MACROMOLECULES ON CELL BEHAVIOUR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Neto, AI.; Cibrao, AC.; Correia, CR.; Carvalho, RR.; Luz, GM.; Ferrer, G.; Botelho, G.... (2014). Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. Small. 10(12):2459-2469. https://doi.org/10.1002/smll.201303568 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/smll.201303568 es_ES
dc.description.upvformatpinicio 2459 es_ES
dc.description.upvformatpfin 2469 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 24616168 es_ES
dc.relation.pasarela S\286293 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Ma, Z., Mao, Z., & Gao, C. (2007). Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces, 60(2), 137-157. doi:10.1016/j.colsurfb.2007.06.019 es_ES
dc.description.references Alves, N. M., Pashkuleva, I., Reis, R. L., & Mano, J. F. (2010). Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 6(20), 2208-2220. doi:10.1002/smll.201000233 es_ES
dc.description.references Shin, H., Jo, S., & Mikos, A. G. (2003). Biomimetic materials for tissue engineering. Biomaterials, 24(24), 4353-4364. doi:10.1016/s0142-9612(03)00339-9 es_ES
dc.description.references Lee, H., Lee, Y., Statz, A. R., Rho, J., Park, T. G., & Messersmith, P. B. (2008). Substrate-Independent Layer-by-Layer Assembly by Using Mussel-Adhesive-Inspired Polymers. Advanced Materials, 20(9), 1619-1623. doi:10.1002/adma.200702378 es_ES
dc.description.references WAITE, J. H., & TANZER, M. L. (1981). Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science, 212(4498), 1038-1040. doi:10.1126/science.212.4498.1038 es_ES
dc.description.references Neto, A. I., Meredith, H. J., Jenkins, C. L., Wilker, J. J., & Mano, J. F. (2013). Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Advances, 3(24), 9352. doi:10.1039/c3ra40715b es_ES
dc.description.references Yu, M., & Deming, T. J. (1998). Synthetic Polypeptide Mimics of Marine Adhesives. Macromolecules, 31(15), 4739-4745. doi:10.1021/ma980268z es_ES
dc.description.references Deming, T. J. (1999). Mussel byssus and biomolecular materials. Current Opinion in Chemical Biology, 3(1), 100-105. doi:10.1016/s1367-5931(99)80018-0 es_ES
dc.description.references Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 318(5849), 426-430. doi:10.1126/science.1147241 es_ES
dc.description.references Anderson, T. H., Yu, J., Estrada, A., Hammer, M. U., Waite, J. H., & Israelachvili, J. N. (2010). The Contribution of DOPA to Substrate-Peptide Adhesion and Internal Cohesion of Mussel-Inspired Synthetic Peptide Films. Advanced Functional Materials, 20(23), 4196-4205. doi:10.1002/adfm.201000932 es_ES
dc.description.references Lee, Y., Chung, H. J., Yeo, S., Ahn, C.-H., Lee, H., Messersmith, P. B., & Park, T. G. (2010). Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter, 6(5), 977. doi:10.1039/b919944f es_ES
dc.description.references Serizawa, T., Yamaguchi, M., Matsuyama, T., & Akashi, M. (2000). Alternating Bioactivity of Polymeric Layer-by-Layer Assemblies:  Anti- vs Procoagulation of Human Blood on Chitosan and Dextran Sulfate Layers. Biomacromolecules, 1(3), 306-309. doi:10.1021/bm000006g es_ES
dc.description.references Picart, C., Lavalle, P., Hubert, P., Cuisinier, F. J. G., Decher, G., Schaaf, P., & Voegel, J.-C. (2001). Buildup Mechanism for Poly(l-lysine)/Hyaluronic Acid Films onto a Solid Surface. Langmuir, 17(23), 7414-7424. doi:10.1021/la010848g es_ES
dc.description.references Qiu, X., Leporatti, S., Donath, E., & Möhwald, H. (2001). Studies on the Drug Release Properties of Polysaccharide Multilayers Encapsulated Ibuprofen Microparticles. Langmuir, 17(17), 5375-5380. doi:10.1021/la010201w es_ES
dc.description.references Liu, Y., He, T., & Gao, C. (2005). Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells. Colloids and Surfaces B: Biointerfaces, 46(2), 117-126. doi:10.1016/j.colsurfb.2005.09.005 es_ES
dc.description.references Zhang, J., Senger, B., Vautier, D., Picart, C., Schaaf, P., Voegel, J.-C., & Lavalle, P. (2005). Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials, 26(16), 3353-3361. doi:10.1016/j.biomaterials.2004.08.019 es_ES
dc.description.references Schneider, A., Vodouhê, C., Richert, L., Francius, G., Le Guen, E., Schaaf, P., … Picart, C. (2007). Multifunctional Polyelectrolyte Multilayer Films:  Combining Mechanical Resistance, Biodegradability, and Bioactivity. Biomacromolecules, 8(1), 139-145. doi:10.1021/bm060765k es_ES
dc.description.references WITTMER, C., PHELPS, J., SALTZMAN, W., & VANTASSEL, P. (2007). Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies. Biomaterials, 28(5), 851-860. doi:10.1016/j.biomaterials.2006.09.037 es_ES
dc.description.references Wu, Z.-R., Ma, J., Liu, B.-F., Xu, Q.-Y., & Cui, F.-Z. (2007). Layer-by-layer assembly of polyelectrolyte films improving cytocompatibility to neural cells. Journal of Biomedical Materials Research Part A, 81A(2), 355-362. doi:10.1002/jbm.a.30993 es_ES
dc.description.references Fraser, J. R. E., Laurent, T. C., & Laurent, U. B. G. (1997). Hyaluronan: its nature, distribution, functions and turnover. Journal of Internal Medicine, 242(1), 27-33. doi:10.1046/j.1365-2796.1997.00170.x es_ES
dc.description.references Pitt, W. G., Morris, R. N., Mason, M. L., Hall, M. W., Luo, Y., & Prestwich, G. D. (2003). Attachment of hyaluronan to metallic surfaces. Journal of Biomedical Materials Research, 68A(1), 95-106. doi:10.1002/jbm.a.10170 es_ES
dc.description.references Lapčík, L., Lapčík, L., De Smedt, S., Demeester, J., & Chabreček, P. (1998). Hyaluronan:  Preparation, Structure, Properties, and Applications†. Chemical Reviews, 98(8), 2663-2684. doi:10.1021/cr941199z es_ES
dc.description.references Chua, P.-H., Neoh, K.-G., Kang, E.-T., & Wang, W. (2008). Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 29(10), 1412-1421. doi:10.1016/j.biomaterials.2007.12.019 es_ES
dc.description.references Rinaudo, M., Milas, M., & Dung, P. L. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules, 15(5), 281-285. doi:10.1016/0141-8130(93)90027-j es_ES
dc.description.references Hench, L. L. (1998). Biomaterials: a forecast for the future. Biomaterials, 19(16), 1419-1423. doi:10.1016/s0142-9612(98)00133-1 es_ES
dc.description.references Jayakumar, R., Prabaharan, M., Reis, R. L., & Mano, J. F. (2005). Graft copolymerized chitosan—present status and applications. Carbohydrate Polymers, 62(2), 142-158. doi:10.1016/j.carbpol.2005.07.017 es_ES
dc.description.references Charlot, A., Sciannaméa, V., Lenoir, S., Faure, E., Jérôme, R., Jérôme, C., … Detrembleur, C. (2009). All-in-one strategy for the fabrication of antimicrobial biomimetic films on stainless steel. Journal of Materials Chemistry, 19(24), 4117. doi:10.1039/b820832h es_ES
dc.description.references Zhang, X., Li, Z., Yuan, X., Cui, Z., & Yang, X. (2013). Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth. Applied Surface Science, 284, 732-737. doi:10.1016/j.apsusc.2013.08.002 es_ES
dc.description.references Baier Leach, J., Bivens, K. A., Patrick Jr., C. W., & Schmidt, C. E. (2003). Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds. Biotechnology and Bioengineering, 82(5), 578-589. doi:10.1002/bit.10605 es_ES
dc.description.references Segura, T., Anderson, B. C., Chung, P. H., Webber, R. E., Shull, K. R., & Shea, L. D. (2005). Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials, 26(4), 359-371. doi:10.1016/j.biomaterials.2004.02.067 es_ES
dc.description.references Bezáková, Z., Hermannová, M., Dřímalová, E., Malovíková, A., Ebringerová, A., & Velebný, V. (2008). Effect of microwave irradiation on the molecular and structural properties of hyaluronan. Carbohydrate Polymers, 73(4), 640-646. doi:10.1016/j.carbpol.2008.01.018 es_ES
dc.description.references Mueller, D. D., Morgan, T. D., Wassenberg, J. D., Hopkins, T. L., & Kramer, K. J. (1993). Proton and carbon-13 NMR of 3-O and 4-O conjugates of dopamine and other catecholamines. Bioconjugate Chemistry, 4(1), 47-53. doi:10.1021/bc00019a007 es_ES
dc.description.references Tokita, Y., & Okamoto, A. (1995). Hydrolytic degradation of hyaluronic acid. Polymer Degradation and Stability, 48(2), 269-273. doi:10.1016/0141-3910(95)00041-j es_ES
dc.description.references Kvam, B. J., Atzori, M., Toffanin, R., Paoletti, S., & Biviano, F. (1992). 1H- and 13C-NMR studies of solutions of hyaluronic acid esters and salts in methyl sulfoxide: comparison of hydrogen-bond patterns and conformational behaviour. Carbohydrate Research, 230(1), 1-13. doi:10.1016/s0008-6215(00)90509-3 es_ES
dc.description.references Metta-Magaña, A. J., Reyes-Martínez, R., & Tlahuext, H. (2007). Crystal structure and NMR spectroscopy of aldonamides derived from d-glycero-d-gulo-heptono-1,4-lactone. Carbohydrate Research, 342(2), 243-253. doi:10.1016/j.carres.2006.11.020 es_ES
dc.description.references Chen, S.-M., & Peng, K.-T. (2003). The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II) hexacyanoferrate films. Journal of Electroanalytical Chemistry, 547(2), 179-189. doi:10.1016/s0022-0728(03)00220-1 es_ES
dc.description.references Richert, L., Lavalle, P., Payan, E., Shu, X. Z., Prestwich, G. D., Stoltz, J.-F., … Picart, C. (2004). Layer by Layer Buildup of Polysaccharide Films: Physical Chemistry and Cellular Adhesion Aspects. Langmuir, 20(2), 448-458. doi:10.1021/la035415n es_ES
dc.description.references Etienne, O., Schneider, A., Taddei, C., Richert, L., Schaaf, P., Voegel, J.-C., … Picart, C. (2005). Degradability of Polysaccharides Multilayer Films in the Oral Environment:  an in Vitro and in Vivo Study. Biomacromolecules, 6(2), 726-733. doi:10.1021/bm049425u es_ES
dc.description.references Ruths, J., Essler, F., Decher, G., & Riegler, H. (2000). Polyelectrolytes I:  Polyanion/Polycation Multilayers at the Air/Monolayer/Water Interface as Elements for Quantitative Polymer Adsorption Studies and Preparation of Hetero-superlattices on Solid Surfaces†. Langmuir, 16(23), 8871-8878. doi:10.1021/la000257a es_ES
dc.description.references McAloney, R. A., Sinyor, M., Dudnik, V., & Goh, M. C. (2001). Atomic Force Microscopy Studies of Salt Effects on Polyelectrolyte Multilayer Film Morphology. Langmuir, 17(21), 6655-6663. doi:10.1021/la010136q es_ES
dc.description.references Ku, S. H., Ryu, J., Hong, S. K., Lee, H., & Park, C. B. (2010). General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials, 31(9), 2535-2541. doi:10.1016/j.biomaterials.2009.12.020 es_ES
dc.description.references Voinova, M. V., Rodahl, M., Jonson, M., & Kasemo, B. (1999). Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach. Physica Scripta, 59(5), 391-396. doi:10.1238/physica.regular.059a00391 es_ES
dc.description.references Edvardsson, M., Svedhem, S., Wang, G., Richter, R., Rodahl, M., & Kasemo, B. (2009). QCM-D and Reflectometry Instrument: Applications to Supported Lipid Structures and Their Biomolecular Interactions. Analytical Chemistry, 81(1), 349-361. doi:10.1021/ac801523w es_ES
dc.description.references Martins, G. V., Mano, J. F., & Alves, N. M. (2010). Nanostructured self-assembled films containing chitosan fabricated at neutral pH. Carbohydrate Polymers, 80(2), 570-573. doi:10.1016/j.carbpol.2009.10.030 es_ES
dc.description.references Martins, G. V., Merino, E. G., Mano, J. F., & Alves, N. M. (2010). Crosslink Effect and Albumin Adsorption onto Chitosan/Alginate Multilayered Systems: An in situ QCM-D Study. Macromolecular Bioscience, 10(12), 1444-1455. doi:10.1002/mabi.201000193 es_ES
dc.description.references Yamada, K., Chen, T., Kumar, G., Vesnovsky, O., Topoleski, L. D. T., & Payne, G. F. (2000). Chitosan Based Water-Resistant Adhesive. Analogy to Mussel Glue. Biomacromolecules, 1(2), 252-258. doi:10.1021/bm0003009 es_ES
dc.description.references Lee, B. P., Dalsin, J. L., & Messersmith, P. B. (2002). Synthesis and Gelation of DOPA-Modified Poly(ethylene glycol) Hydrogels. Biomacromolecules, 3(5), 1038-1047. doi:10.1021/bm025546n es_ES
dc.description.references Ku, S. H., & Park, C. B. (2010). Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials, 31(36), 9431-9437. doi:10.1016/j.biomaterials.2010.08.071 es_ES
dc.description.references Lee, H., Rho, J., & Messersmith, P. B. (2009). Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings. Advanced Materials, 21(4), 431-434. doi:10.1002/adma.200801222 es_ES
dc.description.references Lee, H., Scherer, N. F., & Messersmith, P. B. (2006). Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 103(35), 12999-13003. doi:10.1073/pnas.0605552103 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem