Mostrar el registro sencillo del ítem
dc.contributor.author | Arias-Gonzalez, J. R. | es_ES |
dc.date.accessioned | 2020-10-22T03:32:05Z | |
dc.date.available | 2020-10-22T03:32:05Z | |
dc.date.issued | 2016-11-14 | es_ES |
dc.identifier.issn | 0021-9606 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152801 | |
dc.description.abstract | [EN] Stochastic chains represent a key variety of phenomena in many branches of science within the context of information theory and thermodynamics. They are typically approached by a sequence of independent events or by a memoryless Markov process. Stochastic chains are of special significance to molecular biology, where genes are conveyed by linear polymers made up of molecular subunits and transferred from DNA to proteins by specialized molecular motors in the presence of errors. Here, we demonstrate that when memory is introduced, the statistics of the chain depends on the mechanism by which objects or symbols are assembled, even in the slow dynamics limit wherein friction can be neglected. To analyze these systems, we introduce a sequence-dependent partition function, investigate its properties, and compare it to the standard normalization defined by the statistical physics of ensembles. We then apply this theory to characterize the enzyme-mediated information transfer involved in DNA replication under the real, non-equilibrium conditions, reproducing measured error rates and explaining the typical 100-fold increase in fidelity that is experimentally found when proofreading and edition take place. Our model further predicts that approximately 1 kT has to be consumed to elevate fidelity in one order of magnitude. We anticipate that our results are necessary to interpret configurational order and information management in many molecular systems within biophysics, materials science, communication, and engineering. Published by AIP Publishing. | es_ES |
dc.description.sponsorship | It is a pleasure to thank J. M. R. Parrondo and D. G. Aleja for fruitful discussion. This work was supported the Spanish Ministry of Economy and Competitiveness (Grant Nos. MAT2013-49455-EXP and MAT2015-71806-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | The Journal of Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Information Theory | es_ES |
dc.subject | DNA replication | es_ES |
dc.subject | Fidelity | es_ES |
dc.subject | Statistical Mechanics | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Information management in DNA replication modeled by directional, stochastic chains with memory | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4967335 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-49455-EXP/ES/G-CUADRUPLEX COMO INTERRUPTOR MOLECULAR CONTROLADO POR NANOPARTICULAS Y DEMOSTRADO POR PINZAS OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Arias-Gonzalez, JR. (2016). Information management in DNA replication modeled by directional, stochastic chains with memory. The Journal of Chemical Physics. 145(18):1-11. https://doi.org/10.1063/1.4967335 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1063/1.4967335 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 145 | es_ES |
dc.description.issue | 18 | es_ES |
dc.identifier.pmid | 27846677 | es_ES |
dc.relation.pasarela | S\407992 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Arias-Gonzalez, J. R. (2014). Single-molecule portrait of DNA and RNA double helices. Integr. Biol., 6(10), 904-925. doi:10.1039/c4ib00163j | es_ES |
dc.description.references | Bustamante, C., Cheng, W., & Mejia, Y. X. (2011). Revisiting the Central Dogma One Molecule at a Time. Cell, 144(4), 480-497. doi:10.1016/j.cell.2011.01.033 | es_ES |
dc.description.references | Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., & Lutz, E. (2012). Experimental verification of Landauer’s principle linking information and thermodynamics. Nature, 483(7388), 187-189. doi:10.1038/nature10872 | es_ES |
dc.description.references | Landauer, R. (1961). Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development, 5(3), 183-191. doi:10.1147/rd.53.0183 | es_ES |
dc.description.references | Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x | es_ES |
dc.description.references | Bennett, C. H. (1982). The thermodynamics of computation—a review. International Journal of Theoretical Physics, 21(12), 905-940. doi:10.1007/bf02084158 | es_ES |
dc.description.references | Brandão, F. G. S. L., & Plenio, M. B. (2008). Entanglement theory and the second law of thermodynamics. Nature Physics, 4(11), 873-877. doi:10.1038/nphys1100 | es_ES |
dc.description.references | Liu, B.-H., Li, L., Huang, Y.-F., Li, C.-F., Guo, G.-C., Laine, E.-M., … Piilo, J. (2011). Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Physics, 7(12), 931-934. doi:10.1038/nphys2085 | es_ES |
dc.description.references | Wang, M. C., & Uhlenbeck, G. E. (1945). On the Theory of the Brownian Motion II. Reviews of Modern Physics, 17(2-3), 323-342. doi:10.1103/revmodphys.17.323 | es_ES |
dc.description.references | Pressé, S., Lee, J., & Dill, K. A. (2013). Extracting Conformational Memory from Single-Molecule Kinetic Data. The Journal of Physical Chemistry B, 117(2), 495-502. doi:10.1021/jp309420u | es_ES |
dc.description.references | Breuer, H.-P. (2012). Foundations and measures of quantum non-Markovianity. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(15), 154001. doi:10.1088/0953-4075/45/15/154001 | es_ES |
dc.description.references | Rivas, Á., Huelga, S. F., & Plenio, M. B. (2014). Quantum non-Markovianity: characterization, quantification and detection. Reports on Progress in Physics, 77(9), 094001. doi:10.1088/0034-4885/77/9/094001 | es_ES |
dc.description.references | Kunkel, T. A., & Bebenek, K. (2000). DNA Replication Fidelity. Annual Review of Biochemistry, 69(1), 497-529. doi:10.1146/annurev.biochem.69.1.497 | es_ES |
dc.description.references | Loeb, L. A., & Kunkel, T. A. (1982). Fidelity of DNA Synthesis. Annual Review of Biochemistry, 51(1), 429-457. doi:10.1146/annurev.bi.51.070182.002241 | es_ES |
dc.description.references | Lee, H. R., & Johnson, K. A. (2006). Fidelity of the Human Mitochondrial DNA Polymerase. Journal of Biological Chemistry, 281(47), 36236-36240. doi:10.1074/jbc.m607964200 | es_ES |
dc.description.references | Bernardi, F., & Ninio, J. (1979). The accuracy of DNA replication. Biochimie, 60(10), 1083-1095. doi:10.1016/s0300-9084(79)80343-0 | es_ES |
dc.description.references | Arias-Gonzalez, J. R. (2012). Entropy Involved in Fidelity of DNA Replication. PLoS ONE, 7(8), e42272. doi:10.1371/journal.pone.0042272 | es_ES |
dc.description.references | Andrieux, D., & Gaspard, P. (2008). Nonequilibrium generation of information in copolymerization processes. Proceedings of the National Academy of Sciences, 105(28), 9516-9521. doi:10.1073/pnas.0802049105 | es_ES |
dc.description.references | Andrieux, D., & Gaspard, P. (2009). Molecular information processing in nonequilibrium copolymerizations. The Journal of Chemical Physics, 130(1), 014901. doi:10.1063/1.3050099 | es_ES |
dc.description.references | Bennett, C. H. (1979). Dissipation-error tradeoff in proofreading. Biosystems, 11(2-3), 85-91. doi:10.1016/0303-2647(79)90003-0 | es_ES |
dc.description.references | Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie, 57(5), 587-595. doi:10.1016/s0300-9084(75)80139-8 | es_ES |
dc.description.references | Hopfield, J. J. (1974). Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity. Proceedings of the National Academy of Sciences, 71(10), 4135-4139. doi:10.1073/pnas.71.10.4135 | es_ES |
dc.description.references | Cover, T. M., & Thomas, J. A. (1991). Elements of Information Theory. Wiley Series in Telecommunications. doi:10.1002/0471200611 | es_ES |
dc.description.references | Schindler, P., Nigg, D., Monz, T., Barreiro, J. T., Martinez, E., Wang, S. X., … Blatt, R. (2013). A quantum information processor with trapped ions. New Journal of Physics, 15(12), 123012. doi:10.1088/1367-2630/15/12/123012 | es_ES |
dc.description.references | Kamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019 | es_ES |
dc.description.references | Johnson, S. J., & Beese, L. S. (2004). Structures of Mismatch Replication Errors Observed in a DNA Polymerase. Cell, 116(6), 803-816. doi:10.1016/s0092-8674(04)00252-1 | es_ES |
dc.description.references | Brovarets’, O. O., & Hovorun, D. M. (2015). New structural hypostases of the A·T and G·C Watson–Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: a QM/QTAIM prediction. RSC Advances, 5(121), 99594-99605. doi:10.1039/c5ra19971a | es_ES |
dc.description.references | Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219 | es_ES |
dc.description.references | Echols, H., & Goodman, M. F. (1991). Fidelity Mechanisms in DNA Replication. Annual Review of Biochemistry, 60(1), 477-511. doi:10.1146/annurev.bi.60.070191.002401 | es_ES |
dc.description.references | SantaLucia, J., & Hicks, D. (2004). The Thermodynamics of DNA Structural Motifs. Annual Review of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800 | es_ES |
dc.description.references | Erie, D. A., Yager, T. D., & von Hippel, P. H. (1992). The Single-Nucleotide Addition Cycle in Transcription: a Biophysical and Biochemical Perspective. Annual Review of Biophysics and Biomolecular Structure, 21(1), 379-415. doi:10.1146/annurev.bb.21.060192.002115 | es_ES |
dc.description.references | SantaLucia, J. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences, 95(4), 1460-1465. doi:10.1073/pnas.95.4.1460 | es_ES |
dc.description.references | Brovarets’, O. O., & Hovorun, D. M. (2015). Tautomeric transition between wobble A·C DNA base mispair and Watson–Crick-like A·C* mismatch: microstructural mechanism and biological significance. Physical Chemistry Chemical Physics, 17(23), 15103-15110. doi:10.1039/c5cp01568e | es_ES |
dc.description.references | Brovarets’, O. O., & Hovorun, D. M. (2015). How many tautomerization pathways connect Watson–Crick-like G*·T DNA base mispair and wobble mismatches? Journal of Biomolecular Structure and Dynamics, 33(11), 2297-2315. doi:10.1080/07391102.2015.1046936 | es_ES |
dc.description.references | Brovarets’, O. O., & Hovorun, D. M. (2015). Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: a key to the intimate mechanisms of the spontaneous transversions. Journal of Biomolecular Structure and Dynamics, 33(12), 2710-2715. doi:10.1080/07391102.2015.1077737 | es_ES |
dc.description.references | Brovarets’, O. O., & Hovorun, D. M. (2015). Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A·G and C·T DNA base mispairs: a quantum-chemical picture. RSC Advances, 5(81), 66318-66333. doi:10.1039/c5ra11773a | es_ES |
dc.description.references | Brovarets’, O. O., & Hovorun, D. M. (2015). A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: a QM/QTAIM highlight. Physical Chemistry Chemical Physics, 17(33), 21381-21388. doi:10.1039/c5cp03211c | es_ES |
dc.description.references | Guajardo, R., & Sousa, R. (1997). A model for the mechanism of polymerase translocation 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 265(1), 8-19. doi:10.1006/jmbi.1996.0707 | es_ES |
dc.description.references | Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., & Gelles, J. (1995). Transcription Against an Applied Force. Science, 270(5242), 1653-1657. doi:10.1126/science.270.5242.1653 | es_ES |
dc.description.references | Saturno, J., Blanco, L., Salas, M., & Esteban, J. A. (1995). A Novel Kinetic Analysis to Calculate Nucleotide Affinity of Proofreading DNA Polymerases: Journal of Biological Chemistry, 270(52), 31235-31243. doi:10.1074/jbc.270.52.31235 | es_ES |
dc.description.references | Wuite, G. J. L., Smith, S. B., Young, M., Keller, D., & Bustamante, C. (2000). Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature, 404(6773), 103-106. doi:10.1038/35003614 | es_ES |
dc.description.references | Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109 | es_ES |
dc.description.references | Morin, J. A., Cao, F. J., Lázaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2015). Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Research, 43(7), 3643-3652. doi:10.1093/nar/gkv204 | es_ES |
dc.description.references | Iyer, R. R., Pluciennik, A., Burdett, V., & Modrich, P. L. (2006). DNA Mismatch Repair: Functions and Mechanisms. Chemical Reviews, 106(2), 302-323. doi:10.1021/cr0404794 | es_ES |