- -

Information management in DNA replication modeled by directional, stochastic chains with memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Information management in DNA replication modeled by directional, stochastic chains with memory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.date.accessioned 2020-10-22T03:32:05Z
dc.date.available 2020-10-22T03:32:05Z
dc.date.issued 2016-11-14 es_ES
dc.identifier.issn 0021-9606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152801
dc.description.abstract [EN] Stochastic chains represent a key variety of phenomena in many branches of science within the context of information theory and thermodynamics. They are typically approached by a sequence of independent events or by a memoryless Markov process. Stochastic chains are of special significance to molecular biology, where genes are conveyed by linear polymers made up of molecular subunits and transferred from DNA to proteins by specialized molecular motors in the presence of errors. Here, we demonstrate that when memory is introduced, the statistics of the chain depends on the mechanism by which objects or symbols are assembled, even in the slow dynamics limit wherein friction can be neglected. To analyze these systems, we introduce a sequence-dependent partition function, investigate its properties, and compare it to the standard normalization defined by the statistical physics of ensembles. We then apply this theory to characterize the enzyme-mediated information transfer involved in DNA replication under the real, non-equilibrium conditions, reproducing measured error rates and explaining the typical 100-fold increase in fidelity that is experimentally found when proofreading and edition take place. Our model further predicts that approximately 1 kT has to be consumed to elevate fidelity in one order of magnitude. We anticipate that our results are necessary to interpret configurational order and information management in many molecular systems within biophysics, materials science, communication, and engineering. Published by AIP Publishing. es_ES
dc.description.sponsorship It is a pleasure to thank J. M. R. Parrondo and D. G. Aleja for fruitful discussion. This work was supported the Spanish Ministry of Economy and Competitiveness (Grant Nos. MAT2013-49455-EXP and MAT2015-71806-R). es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof The Journal of Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Information Theory es_ES
dc.subject DNA replication es_ES
dc.subject Fidelity es_ES
dc.subject Statistical Mechanics es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Information management in DNA replication modeled by directional, stochastic chains with memory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4967335 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-49455-EXP/ES/G-CUADRUPLEX COMO INTERRUPTOR MOLECULAR CONTROLADO POR NANOPARTICULAS Y DEMOSTRADO POR PINZAS OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Arias-Gonzalez, JR. (2016). Information management in DNA replication modeled by directional, stochastic chains with memory. The Journal of Chemical Physics. 145(18):1-11. https://doi.org/10.1063/1.4967335 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.4967335 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 145 es_ES
dc.description.issue 18 es_ES
dc.identifier.pmid 27846677 es_ES
dc.relation.pasarela S\407992 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Arias-Gonzalez, J. R. (2014). Single-molecule portrait of DNA and RNA double helices. Integr. Biol., 6(10), 904-925. doi:10.1039/c4ib00163j es_ES
dc.description.references Bustamante, C., Cheng, W., & Mejia, Y. X. (2011). Revisiting the Central Dogma One Molecule at a Time. Cell, 144(4), 480-497. doi:10.1016/j.cell.2011.01.033 es_ES
dc.description.references Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., & Lutz, E. (2012). Experimental verification of Landauer’s principle linking information and thermodynamics. Nature, 483(7388), 187-189. doi:10.1038/nature10872 es_ES
dc.description.references Landauer, R. (1961). Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development, 5(3), 183-191. doi:10.1147/rd.53.0183 es_ES
dc.description.references Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x es_ES
dc.description.references Bennett, C. H. (1982). The thermodynamics of computation—a review. International Journal of Theoretical Physics, 21(12), 905-940. doi:10.1007/bf02084158 es_ES
dc.description.references Brandão, F. G. S. L., & Plenio, M. B. (2008). Entanglement theory and the second law of thermodynamics. Nature Physics, 4(11), 873-877. doi:10.1038/nphys1100 es_ES
dc.description.references Liu, B.-H., Li, L., Huang, Y.-F., Li, C.-F., Guo, G.-C., Laine, E.-M., … Piilo, J. (2011). Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Physics, 7(12), 931-934. doi:10.1038/nphys2085 es_ES
dc.description.references Wang, M. C., & Uhlenbeck, G. E. (1945). On the Theory of the Brownian Motion II. Reviews of Modern Physics, 17(2-3), 323-342. doi:10.1103/revmodphys.17.323 es_ES
dc.description.references Pressé, S., Lee, J., & Dill, K. A. (2013). Extracting Conformational Memory from Single-Molecule Kinetic Data. The Journal of Physical Chemistry B, 117(2), 495-502. doi:10.1021/jp309420u es_ES
dc.description.references Breuer, H.-P. (2012). Foundations and measures of quantum non-Markovianity. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(15), 154001. doi:10.1088/0953-4075/45/15/154001 es_ES
dc.description.references Rivas, Á., Huelga, S. F., & Plenio, M. B. (2014). Quantum non-Markovianity: characterization, quantification and detection. Reports on Progress in Physics, 77(9), 094001. doi:10.1088/0034-4885/77/9/094001 es_ES
dc.description.references Kunkel, T. A., & Bebenek, K. (2000). DNA Replication Fidelity. Annual Review of Biochemistry, 69(1), 497-529. doi:10.1146/annurev.biochem.69.1.497 es_ES
dc.description.references Loeb, L. A., & Kunkel, T. A. (1982). Fidelity of DNA Synthesis. Annual Review of Biochemistry, 51(1), 429-457. doi:10.1146/annurev.bi.51.070182.002241 es_ES
dc.description.references Lee, H. R., & Johnson, K. A. (2006). Fidelity of the Human Mitochondrial DNA Polymerase. Journal of Biological Chemistry, 281(47), 36236-36240. doi:10.1074/jbc.m607964200 es_ES
dc.description.references Bernardi, F., & Ninio, J. (1979). The accuracy of DNA replication. Biochimie, 60(10), 1083-1095. doi:10.1016/s0300-9084(79)80343-0 es_ES
dc.description.references Arias-Gonzalez, J. R. (2012). Entropy Involved in Fidelity of DNA Replication. PLoS ONE, 7(8), e42272. doi:10.1371/journal.pone.0042272 es_ES
dc.description.references Andrieux, D., & Gaspard, P. (2008). Nonequilibrium generation of information in copolymerization processes. Proceedings of the National Academy of Sciences, 105(28), 9516-9521. doi:10.1073/pnas.0802049105 es_ES
dc.description.references Andrieux, D., & Gaspard, P. (2009). Molecular information processing in nonequilibrium copolymerizations. The Journal of Chemical Physics, 130(1), 014901. doi:10.1063/1.3050099 es_ES
dc.description.references Bennett, C. H. (1979). Dissipation-error tradeoff in proofreading. Biosystems, 11(2-3), 85-91. doi:10.1016/0303-2647(79)90003-0 es_ES
dc.description.references Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie, 57(5), 587-595. doi:10.1016/s0300-9084(75)80139-8 es_ES
dc.description.references Hopfield, J. J. (1974). Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity. Proceedings of the National Academy of Sciences, 71(10), 4135-4139. doi:10.1073/pnas.71.10.4135 es_ES
dc.description.references Cover, T. M., & Thomas, J. A. (1991). Elements of Information Theory. Wiley Series in Telecommunications. doi:10.1002/0471200611 es_ES
dc.description.references Schindler, P., Nigg, D., Monz, T., Barreiro, J. T., Martinez, E., Wang, S. X., … Blatt, R. (2013). A quantum information processor with trapped ions. New Journal of Physics, 15(12), 123012. doi:10.1088/1367-2630/15/12/123012 es_ES
dc.description.references Kamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019 es_ES
dc.description.references Johnson, S. J., & Beese, L. S. (2004). Structures of Mismatch Replication Errors Observed in a DNA Polymerase. Cell, 116(6), 803-816. doi:10.1016/s0092-8674(04)00252-1 es_ES
dc.description.references Brovarets’, O. O., & Hovorun, D. M. (2015). New structural hypostases of the A·T and G·C Watson–Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: a QM/QTAIM prediction. RSC Advances, 5(121), 99594-99605. doi:10.1039/c5ra19971a es_ES
dc.description.references Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219 es_ES
dc.description.references Echols, H., & Goodman, M. F. (1991). Fidelity Mechanisms in DNA Replication. Annual Review of Biochemistry, 60(1), 477-511. doi:10.1146/annurev.bi.60.070191.002401 es_ES
dc.description.references SantaLucia, J., & Hicks, D. (2004). The Thermodynamics of DNA Structural Motifs. Annual Review of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800 es_ES
dc.description.references Erie, D. A., Yager, T. D., & von Hippel, P. H. (1992). The Single-Nucleotide Addition Cycle in Transcription: a Biophysical and Biochemical Perspective. Annual Review of Biophysics and Biomolecular Structure, 21(1), 379-415. doi:10.1146/annurev.bb.21.060192.002115 es_ES
dc.description.references SantaLucia, J. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences, 95(4), 1460-1465. doi:10.1073/pnas.95.4.1460 es_ES
dc.description.references Brovarets’, O. O., & Hovorun, D. M. (2015). Tautomeric transition between wobble A·C DNA base mispair and Watson–Crick-like A·C* mismatch: microstructural mechanism and biological significance. Physical Chemistry Chemical Physics, 17(23), 15103-15110. doi:10.1039/c5cp01568e es_ES
dc.description.references Brovarets’, O. O., & Hovorun, D. M. (2015). How many tautomerization pathways connect Watson–Crick-like G*·T DNA base mispair and wobble mismatches? Journal of Biomolecular Structure and Dynamics, 33(11), 2297-2315. doi:10.1080/07391102.2015.1046936 es_ES
dc.description.references Brovarets’, O. O., & Hovorun, D. M. (2015). Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: a key to the intimate mechanisms of the spontaneous transversions. Journal of Biomolecular Structure and Dynamics, 33(12), 2710-2715. doi:10.1080/07391102.2015.1077737 es_ES
dc.description.references Brovarets’, O. O., & Hovorun, D. M. (2015). Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A·G and C·T DNA base mispairs: a quantum-chemical picture. RSC Advances, 5(81), 66318-66333. doi:10.1039/c5ra11773a es_ES
dc.description.references Brovarets’, O. O., & Hovorun, D. M. (2015). A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: a QM/QTAIM highlight. Physical Chemistry Chemical Physics, 17(33), 21381-21388. doi:10.1039/c5cp03211c es_ES
dc.description.references Guajardo, R., & Sousa, R. (1997). A model for the mechanism of polymerase translocation 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 265(1), 8-19. doi:10.1006/jmbi.1996.0707 es_ES
dc.description.references Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., & Gelles, J. (1995). Transcription Against an Applied Force. Science, 270(5242), 1653-1657. doi:10.1126/science.270.5242.1653 es_ES
dc.description.references Saturno, J., Blanco, L., Salas, M., & Esteban, J. A. (1995). A Novel Kinetic Analysis to Calculate Nucleotide Affinity of Proofreading DNA Polymerases: Journal of Biological Chemistry, 270(52), 31235-31243. doi:10.1074/jbc.270.52.31235 es_ES
dc.description.references Wuite, G. J. L., Smith, S. B., Young, M., Keller, D., & Bustamante, C. (2000). Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature, 404(6773), 103-106. doi:10.1038/35003614 es_ES
dc.description.references Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109 es_ES
dc.description.references Morin, J. A., Cao, F. J., Lázaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2015). Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Research, 43(7), 3643-3652. doi:10.1093/nar/gkv204 es_ES
dc.description.references Iyer, R. R., Pluciennik, A., Burdett, V., & Modrich, P. L. (2006). DNA Mismatch Repair:  Functions and Mechanisms. Chemical Reviews, 106(2), 302-323. doi:10.1021/cr0404794 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem