Mostrar el registro sencillo del ítem
dc.contributor.author | Ramos, Helena M. | es_ES |
dc.contributor.author | Zilhao, M. | es_ES |
dc.contributor.author | López Jiménez, Petra Amparo | es_ES |
dc.contributor.author | Pérez-Sánchez, Modesto | es_ES |
dc.date.accessioned | 2020-10-22T03:32:46Z | |
dc.date.available | 2020-10-22T03:32:46Z | |
dc.date.issued | 2019-03-16 | es_ES |
dc.identifier.issn | 1573-062X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/152817 | |
dc.description.abstract | [EN] Water distribution networks and irrigation systems consume high energy quantities that need to be recovered if the water managers want to meet sustainable systems. A sustainability optimization is proposed in this research in order to replace the energy consumption in a golf-course system by renewable solutions joining energy recovery, sustainable urban drainage systems and hybrid solutions (solar panels and wind turbine). Different sustainable approaches were considered in which energy (using PATs), economic and environmental factors were analysed. Both scenarios and analyses showed interesting values related to economic indicators and environmental reductions of CO2 emissions. The possibility to supply the daily electric consumption in the pumping stations was checked using only renewable systems. Net present value was calculated in different solutions, obtaining positive values as well as the payback period was lower than 6 years. The CO2 emissions were reduced from 257,000 to 11,500 kgCO2/year in the most unfavourable scenario. | es_ES |
dc.description.sponsorship | The authors wish to thank to the project REDAWN (Reducing Energy Dependency in Atlantic Area Water Networks) EAPA_198/2016 from INTERREG ATLANTIC AREA PROGRAMME 2014-2020, CERIS (CEHIDRO-IST) and the IST-Lab for PATs testing. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Urban Water Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Energy recovery | es_ES |
dc.subject | Pump as turbine (PAT) | es_ES |
dc.subject | Efficiency and sustainability | es_ES |
dc.subject | Water distribution networks (WDN) | es_ES |
dc.subject | Smart water grids | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Sustainable water-energy nexus in the optimization of the BBC golf-course using renewable energies | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/1573062X.2019.1648529 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FEDER//ATLANTIC-EAPA_198/2016/EU/Reducing energy dependency in atlantic area water networks/REDAWN/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Ramos, HM.; Zilhao, M.; López Jiménez, PA.; Pérez-Sánchez, M. (2019). Sustainable water-energy nexus in the optimization of the BBC golf-course using renewable energies. Urban Water Journal. 16(3):1-11. https://doi.org/10.1080/1573062X.2019.1648529 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/1573062X.2019.1648529 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\392354 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Britton, T. C., Stewart, R. A., & O’Halloran, K. R. (2013). Smart metering: enabler for rapid and effective post meter leakage identification and water loss management. Journal of Cleaner Production, 54, 166-176. doi:10.1016/j.jclepro.2013.05.018 | es_ES |
dc.description.references | Cabrera, E., Cabrera, E., Cobacho, R., & Soriano, J. (2014). Towards an Energy Labelling of Pressurized Water Networks. Procedia Engineering, 70, 209-217. doi:10.1016/j.proeng.2014.02.024 | es_ES |
dc.description.references | Carravetta, A., Del Giudice, G., Fecarotta, O., & Ramos, H. M. (2012). Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resources Management, 26(13), 3947-3959. doi:10.1007/s11269-012-0114-1 | es_ES |
dc.description.references | Carravetta, A., del Giudice, G., Fecarotta, O., & Ramos, H. (2013). PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies, 6(1), 411-424. doi:10.3390/en6010411 | es_ES |
dc.description.references | De Marchis, M., Fontanazza, C. M., Freni, G., Messineo, A., Milici, B., Napoli, E., … Scopa, A. (2014). Energy Recovery in Water Distribution Networks. Implementation of Pumps as Turbine in a Dynamic Numerical Model. Procedia Engineering, 70, 439-448. doi:10.1016/j.proeng.2014.02.049 | es_ES |
dc.description.references | HOMER. 2017. “HOMER energy – HOMER Pro 3.11 User Manual.” Accessed 7 December 2017. https://www.homerenergy.com/support/docs/ | es_ES |
dc.description.references | Jawahar, C. P., & Michael, P. A. (2017). A review on turbines for micro hydro power plant. Renewable and Sustainable Energy Reviews, 72, 882-887. doi:10.1016/j.rser.2017.01.133 | es_ES |
dc.description.references | Novara, D., Carravetta, A., McNabola, A., & Ramos, H. M. (2019). Cost Model for Pumps as Turbines in Run-of-River and In-Pipe Microhydropower Applications. Journal of Water Resources Planning and Management, 145(5), 04019012. doi:10.1061/(asce)wr.1943-5452.0001063 | es_ES |
dc.description.references | Novara, D., & McNabola, A. (2018). A model for the extrapolation of the characteristic curves of Pumps as Turbines from a datum Best Efficiency Point. Energy Conversion and Management, 174, 1-7. doi:10.1016/j.enconman.2018.07.091 | es_ES |
dc.description.references | Pérez-Sánchez, M., Ferreira, A. R., Amparo López-Jiménez, P., & Ramos, H. M. (2018). Design strategy to maximize recovery energy towards smart water grids: case study. Urban Water Journal, 15(4), 329-337. doi:10.1080/1573062x.2018.1459747 | es_ES |
dc.description.references | Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234 | es_ES |
dc.description.references | Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2017). Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water, 9(2), 97. doi:10.3390/w9020097 | es_ES |
dc.description.references | Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. A. (2017). Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application. Water, 9(10), 799. doi:10.3390/w9100799 | es_ES |
dc.description.references | Ramos, H. M., Kenov, K. N., & Vieira, F. (2011). Environmentally friendly hybrid solutions to improve the energy and hydraulic efficiency in water supply systems. Energy for Sustainable Development, 15(4), 436-442. doi:10.1016/j.esd.2011.07.009 | es_ES |
dc.description.references | Ramos, H. M., and A. Almeida. 2000. “Small Hydro as One of the Oldest Renewable Energy Sources.” Water Power and Dam Construction. Lisbon: Small Hydro. Accessed 9 February 2016. https://www.researchgate.net/profile/Helena_Ramos3/publication/237532453_SMALL_HYDRO_AS_ONE_OF_THE_OLDEST_RENEWABLE_ENERGY_SOURCES/links/00b49539d55ea83c01000000.pdf | es_ES |
dc.description.references | Ramos, H., Pérez-Sánchez, M., Franco, A., & López-Jiménez, P. (2017). Urban Floods Adaptation and Sustainable Drainage Measures. Fluids, 2(4), 61. doi:10.3390/fluids2040061 | es_ES |
dc.description.references | Ramos, H. M., Teyssier, C., & López-Jiménez, P. A. (2013). Optimization of Retention Ponds to Improve the Drainage System Elasticity for Water-Energy Nexus. Water Resources Management, 27(8), 2889-2901. doi:10.1007/s11269-013-0322-3 | es_ES |
dc.description.references | Ramos, H. M., Teyssier, C., Samora, I., & Schleiss, A. J. (2013). Energy recovery in SUDS towards smart water grids: A case study. Energy Policy, 62, 463-472. doi:10.1016/j.enpol.2013.08.014 | es_ES |
dc.description.references | Ramos, H. M., N. Kenov, K., & Pillet, B. (2012). Stormwater Storage Pond Configuration for Hydropower Solutions: Adaptation and Optimization. Journal of Sustainable Development, 5(8). doi:10.5539/jsd.v5n8p27 | es_ES |
dc.description.references | Ramos, J. S., & Ramos, H. M. (2009). Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration. Energy Policy, 37(2), 633-643. doi:10.1016/j.enpol.2008.10.006 | es_ES |
dc.description.references | Ueda, T., Roberts, E. S., Norton, A., Styles, D., Williams, A. P., Ramos, H. M., & Gallagher, J. (2019). A life cycle assessment of the construction phase of eleven micro-hydropower installations in the UK. Journal of Cleaner Production, 218, 1-9. doi:10.1016/j.jclepro.2019.01.267 | es_ES |