- -

Mesoscopic model for DNA G-quadruplex unfolding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mesoscopic model for DNA G-quadruplex unfolding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bergues-Pupo, A.E. es_ES
dc.contributor.author Gutiérrez, I. es_ES
dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.contributor.author Falo, F. es_ES
dc.contributor.author Fiasconaro, A. es_ES
dc.date.accessioned 2020-10-23T03:31:16Z
dc.date.available 2020-10-23T03:31:16Z
dc.date.issued 2017-09-18 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153036
dc.description.abstract [EN] Genomes contain rare guanine-rich sequences capable of assembling into four-stranded helical structures, termed G-quadruplexes, with potential roles in gene regulation and chromosome stability. Their mechanical unfolding has only been reported to date by all-atom simulations, which cannot dissect the major physical interactions responsible for their cohesion. Here, we propose a mesoscopic model to describe both the mechanical and thermal stability of DNA G-quadruplexes, where each nucleotide of the structure, as well as each central cation located at the inner channel, is mapped onto a single bead. In this framework we are able to simulate loading rates similar to the experimental ones, which are not reachable in simulations with atomistic resolution. In this regard, we present single-molecule force-induced unfolding experiments by a high-resolution optical tweezers on a DNA telomeric sequence capable of adopting a G-quadruplex conformation. Fitting the parameters of the model to the experiments we find a correct prediction of the rupture-force kinetics and a good agreement with previous near equilibrium measurements. Since G-quadruplex unfolding dynamics is halfway in complexity between secondary nucleic acids and tertiary protein structures, our model entails a nanoscale paradigm for non-equilibrium processes in the cell. es_ES
dc.description.sponsorship Work supported by the Spanish Ministry of Economy and Competitiveness (MINECO), grant No. FIS2014-55867, co-financed by FEDER funds. We also thank the support of the Aragon Government and Fondo Social Europeo to FENOL group. Work in J.R.A.-G. laboratory was supported by a grant from MINECO, No. MAT2015-71806-R). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject DNA modeling es_ES
dc.subject G-quadruplex es_ES
dc.subject Mechano-chemistry es_ES
dc.subject Stochastic es_ES
dc.subject Non-equilibrium es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Mesoscopic model for DNA G-quadruplex unfolding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-017-10849-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de Aragón//E19/ES/Fisica Estadistica y No Lineal (GEFENOL)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2014-55867-P/ES/SOCIOBIOTEC: FISICA ESTADISITCA Y NO LINEAL APLICADA A SISTEMAS SOCIALES, BIOLOGICOS Y TECNOLOGICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Bergues-Pupo, A.; Gutiérrez, I.; Arias-Gonzalez, JR.; Falo, F.; Fiasconaro, A. (2017). Mesoscopic model for DNA G-quadruplex unfolding. Scientific Reports. 7:1-13. https://doi.org/10.1038/s41598-017-10849-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-017-10849-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.pmid 28924219 es_ES
dc.identifier.pmcid PMC5603602 es_ES
dc.relation.pasarela S\407989 es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Arias-Gonzalez, J. R. Single-molecule portrait of DNA and RNA double helices. Integr. Biol. 6, 904 (2014). es_ES
dc.description.references Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402 (2006). es_ES
dc.description.references Lam, E. Y., Beraldi, D., Tannahill, D. & Balasubramanian, S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 4, 1796 (2013). es_ES
dc.description.references Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 99, 11593 (2002). es_ES
dc.description.references Endoh, T. & Sugimoto, N. Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells. Sci. Rep. 6, 1 (2016). es_ES
dc.description.references Hänsel-Hertsch, R., Di Antonio, M. & Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 18, 279 (2017). es_ES
dc.description.references de Messieres, M., Chang, J. C., Brawn-Cinani, B. & La Porta, A. Single-molecule study of G-quadruplex disruption using dynamic force spectroscopy. Phys. Rev. Lett. 109, 058101 (2012). es_ES
dc.description.references Koirala, D. et al. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat. Chem. 3, 782 (2011). es_ES
dc.description.references Long, X. et al. Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res. 41, 2746 (2013). es_ES
dc.description.references Ghimire, C. et al. Direct Quantification of Loop Interaction and pi-pi Stacking for G-Quadruplex Stability at the Submolecular Level. J. Am. Chem. Soc. 136, 15544 (2014). es_ES
dc.description.references Garavís, M. et al. Mechanical Unfolding of Long Human Telomeric RNA (TERRA). Chem. Commun. 49, 6397 (2013). es_ES
dc.description.references Fonseca Guerra, C., Zijlstra, H., Paragi, G. & Bickelhaupt, F. M. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. Chemistry-A European Journal 17, 12612 (2011). es_ES
dc.description.references Yurenko, Y. P., Novotn, J., Sklen, V. & Marek, R. Exploring non-covalent interactions in guanine-and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Phys. Chem. Chem. Phys. 16, 2072 (2014). es_ES
dc.description.references Poudel, L. et al. Implication of the solvent effect, metal ions and topology in the electronic structure and hydrogen bonding of human telomeric G-quadruplex DNA. Phys. Chem. Chem. Phys. 18, 21573 (2016). es_ES
dc.description.references Li, M. H., Luo, Q., Xue, X. G. & Li, Z. S. Toward a full structural characterization of G-quadruplex DNA in aqueous solution: Molecular dynamics simulations of four G-quadruplex molecules. J. Mol. Struct-Theochem. 952, 96 (2010). es_ES
dc.description.references Islam, B. et al. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Res. 41, 2723 (2013). es_ES
dc.description.references Stadlbauer, P., Krepl, M., Cheatham, T. E., Koca, J. & Sponer, J. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res. 41, 7128 (2013). es_ES
dc.description.references Li, H., Cao, E. & Gisler, T. Force-induced unfolding of human telomeric G-quadruplex: a steered molecular dynamics simulation study. Biochem. Bioph. Res. Co. 379, 70 (2009). es_ES
dc.description.references Yang, C., Jang, S. & Pak, Y. Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. J. Chem. Phys. 135, 225104 (2011). es_ES
dc.description.references Bergues-Pupo, A. E., Arias-Gonzalez, J. R., Morón, M. C., Fiasconaro, A. & Falo, F. Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res. 43, 7638 (2015). es_ES
dc.description.references Linak, M. C., Tourdot, R. & Dorfman, K. D. Moving beyond Watson-Crick models of coarse grained DNA dynamics. J. Chem Phys. 135, 205102 (2011). es_ES
dc.description.references Rebi, M., Mocci, F., Laaksonen, A. & Ulin, J. Multiscale simulations of human telomeric G-quadruplex DNA. J. Phys. Chem. B 119, 105 (2014). es_ES
dc.description.references Stadlbauer, P. et al. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J. Chem. Theory Comput. 12, 6077 (2016). es_ES
dc.description.references Parkinson, G. N., Lee, M. P. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876 (2002). es_ES
dc.description.references Bhattacharya, D., Arachchilageand, G. M. & Basu, S. Metal Cations in G-Quadruplex Folding and Stability. Frontiers in Chemistry 4, 38 (2016). es_ES
dc.description.references de Lorenzo, S., Ribezzi-Crivellari, M., Arias-Gonzalez, J. R., Smith, S. B. & Ritort, F. A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophys. J. 108, 2854 (2015). es_ES
dc.description.references Smith, S. B., Cui, Y. & Bustamante, C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 361, 134 (2003). es_ES
dc.description.references Mergny, J. L., Phan, A. T. & Lacroix, L. Following G-quartet formation by UV-spectroscopy. FEBS letters 435, 74 (1998). es_ES
dc.description.references Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187 (1977). es_ES
dc.description.references Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A. & Rosenberg, J. M. The weighted histogram analysis method for free-energy calculations on biomolecules I. The method. J. Comput. Chem. 13, 1011 (1992). es_ES
dc.description.references Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541 (1997). es_ES
dc.description.references Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006). es_ES
dc.description.references Friddle, R. W., Noy, A. & De Yoreo, J. J. Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl. Acad. Sci. 109, 13573 (2012). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem